Skip to main content
Log in

Noncontact Sonic NDE and Defect Imaging Via Local Defect Resonance

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

A selective acoustic activation of defects based on the concept of local defect resonance enables to enhance considerably the intensity of defect vibrations and makes it possible to reduce the input acoustic powers to the levels permissible for noncontact nondestructive inspection. Since for cm-size defects in composite materials, the LDR frequencies lie in the low kHz-range, the resonant noncontact activation shifts to an audible frequency range and can be provided by conventional sonic equipment. In this paper, the feasibility of the resonant noncontact inspection is validated for the most “problematic” methodologies of nonlinear, thermosonic and shearosonic NDE that usually require an elevated acoustic power and, therefore, a reliable contact between the specimen and the transducer. In contrast, the noncontact versions developed employ commercial loudspeakers which can simultaneously insonify large areas and be applied for a contactless sonic inspection of different materials and various scale components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Guyer, R., Johnson, P.: Nonlinear mesoscopic elasticity: evidence for a new class of materials. Phys. Today 52, 30–36 (1999)

    Article  Google Scholar 

  2. Fillinger, L., Zaitsev, V., Gusev, V., Castagnede, B.: Wave self-modulation in an acoustic resonator due to self-induced transparenc. Europhys. Lett. 76(2), 229–235 (2006)

  3. Renshaw, J., Holland, S., Thompson, R.B.: Measurement of crack opening stresses and crack closure stress profiles from heat generation in vibrating cracks. Appl. Phys. Lett. 93(8), 081914 (2008)

    Article  Google Scholar 

  4. Van Abeele, K.E.-A.: Multi-mode nonlinear resonance spectroscopy for defect imaging: an analytical approach for the one-dimensional case. Acoust. J. Soc. Am. 122(1), 73–90 (2007)

    Article  Google Scholar 

  5. Homma, C., Rothenfusser, M., Baumann, J., Shannon, J.: Study of the heat generation mechanism in acoustic thermography. AIP Conf. Proc. 820, 566–573 (2006)

    Article  Google Scholar 

  6. Rothenfuser, M., Homma, C.: Acoustic thermography: vibrational modes of cracks and the mechanism of heat generation. AIP Conf. Proc. 760, 624–631 (2005)

    Article  Google Scholar 

  7. Han, X., Zheng, Z., Li, W., Islam, M.S., Lu, J., Loggins, V., Yitamben, E., Favro, L.D., Newaz, G., Thomas, R.L.: Acoustic chaos for enhanced detectability of cracks by sonic infrared imaging. J. Appl. Phys. 95(7), 3792–3797 (2004)

    Article  Google Scholar 

  8. Lauterborn, W.: Numerical investigation of nonlinear oscillations of gas bubbles in liquids. J. Acoust. Soc. Am. 59(2), 283 (1976)

    Article  MathSciNet  Google Scholar 

  9. Averkiou, M.A.: Tissue harmonic imaging. Proc. IEEE Ultrason. Symp. 2, 1563–1572 (2000)

    Google Scholar 

  10. Solodov, I., Bai, J., Bekgulyan, S., Busse, G.: A local defect resonance to enhance acoustic wave-defect interaction in ultrasonic nondestructive evaluation. Appl. Phys. Lett. 99(21), 211911 (2011)

    Article  Google Scholar 

  11. Solodov, I., Rahammer, M., Derusova, D., Busse, G.: Highly-efficient and noncontact vibro-thermography via local defect resonance. QIRT J. 12(1), 98–111 (2015). doi:10.1080/17686733.2015.1026018

    Article  Google Scholar 

  12. Solodov, I., Busse, G.: Resonance ultrasonic thermography: highly efficient contact and air-coupled remote modes. Appl. Phys. Lett. 102, 061905 (2013). doi:10.1063/1.4792236

    Article  Google Scholar 

  13. Solodov, I., Döring, D., Busse, G.: Air-coupled laser vibrometry: analysis and applications. Appl. Opt. 48, C33–C37 (2009)

    Article  Google Scholar 

  14. Solodov, I., Krohn, N., Busse, G.: CAN: an example of non-classical acoustic nonlinearity in solids. Ultrasonics 40, 621–625 (2002)

    Article  Google Scholar 

  15. Kneubuehl, F.K.: Oscillations and Waves. Springer, Berlin (1997)

    Book  Google Scholar 

  16. Solodov, I.: Resonant acoustic nonlinearity of defects for highly-efficient nonlinear NDE. J. Nondestruct. Eval. 33, 252–262 (2014)

    Article  Google Scholar 

  17. Busse, G., Wu, D., Karpen, W.: Thermal wave imaging with phase sensitive modulated themography. J. Appl. Phys. 71, 3962–3965 (1992)

    Article  Google Scholar 

  18. Menner, Ph, Gerhard, H., Busse, G.: Remote defect visualization with thermal phase angle shearography. AIP Conf. Proc. 1211(1), 2068–2072 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors (I.S.) acknowledges support of this study in the framework of ALAMSA project funded from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 314768.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Solodov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solodov, I., Rahammer, M., Gulnizkij, N. et al. Noncontact Sonic NDE and Defect Imaging Via Local Defect Resonance. J Nondestruct Eval 35, 48 (2016). https://doi.org/10.1007/s10921-016-0364-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-016-0364-6

Keywords

Navigation