A Novel Methodology for Spatial Damage Detection and Imaging Using a Distributed Carbon Nanotube-Based Composite Sensor Combined with Electrical Impedance Tomography

  • Hongbo DaiEmail author
  • Gerard J. Gallo
  • Thomas Schumacher
  • Erik T. Thostenson


This paper describes a novel non-destructive evaluation methodology for imaging of damage in composite materials using the electrical impedance tomography (EIT) technique applied to a distributed carbon nanotube-based sensor. The sensor consists of a nonwoven aramid fabric, which was first coated with nanotubes using a solution casting approach and then infused with epoxy resin through the vacuum assisted resin transfer molding technique. Finally, this composite sensor is cured to become a mechanically-robust, electromechanically-sensitive, and highly customizable distributed two-dimensional sensor which can be adhered to virtually any substrate. By assuming that damage on the sensor directly affects its conductivity, a difference imaging-based EIT algorithm was implemented and tailored to offer two-dimensional maps of conductivity changes, from which damage location and size can be estimated. The reconstruction is based on a newly defined adjacent current–voltage measurement scheme associated with 32 electrodes located along the boundary of the sensor. In this paper, we evaluate our methodology first by introducing well-defined damage where sections are either removed or narrow cuts are made on a series of sensor specimens. Finally, a more realistic damage scenario was investigated to show the capability of our methodology to detect impact damage on a composite laminate. The resulting EIT maps are compared to visual inspection and thermograms taken with an infrared camera.


Distributed sensing Carbon nanotube Composite materials Nonwoven fabric Electrical impedance tomography  Non-destructive evaluation Damage detection Difference imaging 



The support of this collaborative research effort by the National Science Foundation, CMMI Division, Award # 1234830 (Dr. Kishor Mehta, Program Director) is greatly appreciated. The authors would like to thank Technical Fibre Products (TFP) for donating the nonwoven fabrics used in this research. We also would like to acknowledge Dr. Dirk Heider from Center for Composite Materials at University of Delaware for his supply of the infrared camera used in this research.

Supplementary material

10921_2016_341_MOESM1_ESM.docx (433 kb)
Supplementary material 1 (docx 434 KB)


  1. 1.
    Thostenson, E.T., Li, C., Chou, T.: Nanocomposites in context. Compos. Sci. Technol. 65, 491–516 (2005)CrossRefGoogle Scholar
  2. 2.
    Pandey, G., Thostenson, E.T.: Carbon nanotube-based multifunctional polymer nanocomposites. Polym. Rev. 52, 355–416 (2012)CrossRefGoogle Scholar
  3. 3.
    Hu, N., Fukunaga, H., Atobe, S., Liu, Y., Li, J.: Piezoresistive strain sensors made from carbon nanotubes based polymer nanocomposites. Sensors 11, 10691–10723 (2011)CrossRefGoogle Scholar
  4. 4.
    Gao, L., Thostenson, E.T., Zhang, Z., Chou, T.: Coupled carbon nanotube network and acoustic emission monitoring for sensing of damage development in composites. Carbon 47, 1381–1388 (2009)CrossRefGoogle Scholar
  5. 5.
    Kang, I., Schulz, M.J., Kim, J.H., Shanov, V., Shi, D.: A carbon nanotube strain sensor for structural health monitoring. Smart Mater. Struct. 15, 737 (2006)CrossRefGoogle Scholar
  6. 6.
    Gao, L., Thostenson, E.T., Zhang, Z., Chou, T.: Sensing of damage mechanisms in fiber-reinforced composites under cyclic loading using carbon nanotubes. Adv. Funct. Mater. 19, 123–130 (2009)CrossRefGoogle Scholar
  7. 7.
    Thostenson, E.T., Chou, T.: Carbon nanotube-based health monitoring of mechanically fastened composite joints. Compos. Sci. Technol. 68, 2557–2561 (2008)CrossRefGoogle Scholar
  8. 8.
    Lim, A.S., Melrose, Z.R., Thostenson, E.T., Chou, T.: Damage sensing of adhesively-bonded hybrid composite/steel joints using carbon nanotubes. Compos. Sci. Technol. 71, 1183–1189 (2011)CrossRefGoogle Scholar
  9. 9.
    Dai, H., Thostenson, E.T., Schumacher, T.: Processing and characterization of a novel distributed strain sensor using carbon nanotube-based nonwoven composites. Sensors 15, 17728–17747 (2015)CrossRefGoogle Scholar
  10. 10.
    Yao, Y., Glisic, B.: Detection of steel fatigue cracks with strain sensing sheets based on large area electronics. Sensors 15, 8088–8108 (2015)CrossRefGoogle Scholar
  11. 11.
    Naghashpour, A., Van Hoa, S.: A technique for real-time detecting, locating, and quantifying damage in large polymer composite structures made of carbon fibers and carbon nanotube networks. Struct. Health Monit. 14, 35–45 (2015)CrossRefGoogle Scholar
  12. 12.
    Baltopoulos, A., Polydorides, N., Pambaguian, L., Vavouliotis, A., Kostopoulos, V.: Damage identification in carbon fiber reinforced polymer plates using electrical resistance tomography mapping. J. Compos. Mater. 47, 3285–3301 (2013)CrossRefGoogle Scholar
  13. 13.
    Baltopoulos, A., Polydorides, N., Pambaguian, L., Vavouliotis, A., Kostopoulos, V.: Exploiting carbon nanotube networks for damage assessment of fiber reinforced composites. Compos. B 76, 149–158 (2015)CrossRefGoogle Scholar
  14. 14.
    Loyola, B.R., Briggs, T.M., Arronche, L., Loh, K.J., La Saponara, V., O’Bryan, G., Skinner, J.L.: Detection of spatially distributed damage in fiber-reinforced polymer composites. Struct. Health Monit. 12, 225–239 (2013)CrossRefGoogle Scholar
  15. 15.
    Loyola, B.R., Saponara, V., Loh, K.J., Briggs, T.M., O’Bryan, G., Skinner, J.L.: Spatial sensing using electrical impedance tomography. IEEE Sens. J. 13, 2357–2367 (2013)CrossRefGoogle Scholar
  16. 16.
    Tallman, T.N., Gungor, S., Wang, K., Bakis, C.E.: Damage detection via electrical impedance tomography in glass fiber/epoxy laminates with carbon black filler. Struct. Health Monit. 14, 100–109 (2015)CrossRefGoogle Scholar
  17. 17.
    Hou, T., Loh, K.J., Lynch, J.P.: Spatial conductivity mapping of carbon nanotube composite thin films by electrical impedance tomography for sensing applications. Nanotechnology 18, 315501 (2007)CrossRefGoogle Scholar
  18. 18.
    Loh, K.J., Hou, T., Lynch, J.P., Kotov, N.A.: Carbon nanotube sensing skins for spatial strain and impact damage identification. J. Nondestr. Eval. 28, 9–25 (2009)CrossRefGoogle Scholar
  19. 19.
    Tallman, T.N., Gungor, S., Wang, K., Bakis, C.: Damage detection and conductivity evolution in carbon nanofiber epoxy via electrical impedance tomography. Smart Mater. Struct. 23, 045034 (2014)CrossRefGoogle Scholar
  20. 20.
    Hou, T., Lynch, J.P.: Electrical impedance tomographic methods for sensing strain fields and crack damage in cementitious structures. J. Intell. Mater. Syst. Struct. 20, 1363–1379 (2008)CrossRefGoogle Scholar
  21. 21.
    Hallaji, M., Pour-Ghaz, M.: A new sensing skin for qualitative damage detection in concrete elements: rapid difference imaging with electrical resistance tomography. NDT E Int. 68, 13–21 (2014)CrossRefGoogle Scholar
  22. 22.
    Hallaji, M., Seppänen, A., Pour-Ghaz, M.: Electrical impedance tomography-based sensing skin for quantitative imaging of damage in concrete. Smart Mater. Struct. 23, 085001 (2014)CrossRefGoogle Scholar
  23. 23.
    Karhunen, K., Seppänen, A., Lehikoinen, A., Monteiro, P.J., Kaipio, J.P.: Electrical resistance tomography imaging of concrete. Cem. Concr. Res. 40, 137–145 (2010)CrossRefGoogle Scholar
  24. 24.
    Dai, H., Schumacher, T., Thostenson, E: Carbon nanotube-based sensing composites for structural health monitoring of civil infrastructure using non-woven fabrics. In: Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures, Proceedings of the 11th International Conference on Structural Safety and Reliability (ICOSSAR), New York, NY, USA, 16–20 June, 2013, p. 299Google Scholar
  25. 25.
    Hu, N., Karube, Y., Arai, M., Watanabe, T., Yan, C., Li, Y., Liu, Y., Fukunaga, H.: Investigation on sensitivity of a polymer/carbon nanotube composite strain sensor. Carbon 48, 680–687 (2010)CrossRefGoogle Scholar
  26. 26.
    Yu, N., Zhang, Z.H., He, S.Y.: Fracture toughness and fatigue life of MWCNT/epoxy composites. Mater. Sci. Eng. A 494, 380–384 (2008)CrossRefGoogle Scholar
  27. 27.
    Li, C., Thostenson, E.T., Chou, T.: Sensors and actuators based on carbon nanotubes and their composites: a review. Compos. Sci. Technol. 68, 1227–1249 (2008)CrossRefGoogle Scholar
  28. 28.
    Schumacher, T., Thostenson, E.T.: Development of structural carbon nanotube-based sensing composites for concrete structures. J. Intell. Mater. Syst. Struct. 25, 1331–1339 (2014)CrossRefGoogle Scholar
  29. 29.
    Saafi, M.: Wireless and embedded carbon nanotube networks for damage detection in concrete structures. Nanotechnology 20, 395502 (2009)CrossRefGoogle Scholar
  30. 30.
    Ubertini, F., Laflamme, S., Ceylan, H., Materazzi, A.L., Cerni, G., Saleem, H., D’Alessandro, A., Corradini, A.: Novel nanocomposite technologies for dynamic monitoring of structures: a comparison between cement-based embeddable and soft elastomeric surface sensors. Smart Mater. Struct. 23, 045023 (2014)CrossRefGoogle Scholar
  31. 31.
    Gao, L., Chou, T., Thostenson, E.T., Zhang, Z., Coulaud, M.: In situ sensing of impact damage in epoxy/glass fiber composites using percolating carbon nanotube networks. Carbon 49, 3382–3385 (2011)CrossRefGoogle Scholar
  32. 32.
    An, Q., Rider, A.N., Thostenson, E.T.: Electrophoretic deposition of carbon nanotubes onto carbon-fiber fabric for production of carbon/epoxy composites with improved mechanical properties. Carbon 50, 4130–4143 (2012)CrossRefGoogle Scholar
  33. 33.
    An, Q., Rider, A.N., Thostenson, E.T.: Hierarchical composite structures prepared by electrophoretic deposition of carbon nanotubes onto glass fibers. ACS Appl. Mater. Interfaces 5, 2022–2032 (2013)CrossRefGoogle Scholar
  34. 34.
    Harikumar, R., Prabu, R., Raghavan, S.: Electrical impedance tomography (EIT) and its medical applications: a review. Int. J. Soft Comput. Eng. 3, 2231–2307 (2013)Google Scholar
  35. 35.
    Brown, B.: Electrical impedance tomography (EIT): a review. J. Med. Eng. Technol. 27, 97–108 (2003)CrossRefGoogle Scholar
  36. 36.
    Vauhkonen, M.: Electrical impedance tomography and prior information. PhD Dissertation, Univeristy of Kuopio, Finland (1997)Google Scholar
  37. 37.
    Holder, D.S.: Electrical Impedance Tomography: Methods, History and Applications. CRC Press, Boca Raton (2004)CrossRefGoogle Scholar
  38. 38.
    Silvera-Tawil, D., Rye, D., Soleimani, M., Velonaki, M.: Electrical impedance tomography for artificial sensitive robotic skin: a review. IEEE Sens. J. 15, 2001–2016 (2015)CrossRefGoogle Scholar
  39. 39.
    Tallman, T.N., Gungor, S., Wang, K., Bakis, C.: Tactile imaging and distributed strain sensing in highly flexible carbon nanofiber/polyurethane nanocomposites. Carbon 95, 485–493 (2015)CrossRefGoogle Scholar
  40. 40.
    Somersalo, E., Cheney, M., Isaacson, D.: Existence and uniqueness for electrode models for electric current computed tomography. SIAM J. Appl. Math. 52, 1023–1040 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Polydorides, N.: Image reconstruction algorithms for soft-field tomography. PhD Dissertation, University of Manchester Institute of Science and Technology, UK (2002)Google Scholar
  42. 42.
    Adler, A., Guardo, R.: Electrical impedance tomography: regularized imaging and contrast detection. IEEE Trans. Med. Imaging 15, 170–179 (1996)CrossRefGoogle Scholar
  43. 43.
    Bera, T.K., Nagaraju, J.: A MATLAB-based boundary data simulator for studying the resistivity reconstruction using neighbouring current pattern. J. Med. Eng. 15 (2013)Google Scholar
  44. 44.
    Polydorides, N., Lionheart, W.R.: A Matlab toolkit for three-dimensional electrical impedance tomography: a contribution to the electrical impedance and diffuse optical reconstruction software project. Meas. Sci. Technol. 2002, 13 (1871)Google Scholar
  45. 45.
    Persson, P., Strang, G.: A simple mesh generator in MATLAB. SIAM Rev. 46, 329–345 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Vauhkonen, P.J., Vauhkonen, M., Savolainen, T., Kaipio, J.P.: Three-dimensional electrical impedance tomography based on the complete electrode model. IEEE Trans. Biomed. Eng. 46, 1150–1160 (1999)CrossRefGoogle Scholar
  47. 47.
    Richardson, M., Wisheart, M.: Review of low-velocity impact properties of composite materials. Compos. A 27, 1123–1131 (1996)CrossRefGoogle Scholar
  48. 48.
    ASTM Standard: D7136/D7136M-05, Standard Test Method for Measuring the Damage Resistance of a Fiberreinforced Polymer Matrix Composite to a Drop-Weight Impact Event. ASTM International, West Conshohocken (2005)Google Scholar
  49. 49.
    Graham, B., Adler, A.: Objective selection of hyperparameter for EIT. Physiol. Meas. 27, S65 (2006)CrossRefGoogle Scholar
  50. 50.
    Titman, D.: Applications of thermography in non-destructive testing of structures. NDT E Int. 34, 149–154 (2001)Google Scholar
  51. 51.
    Grinzato, E.: State of the art and perspective of infrared thermography applied to building science. In: Meola, C. (ed.) Infrared Thermography Recent Advances and Future Trends, pp. 200–229. Bentham eBooks, New York (2012)Google Scholar
  52. 52.
    Breitenstein, O., Langenkamp, M., Altmann, F., Katzer, D., Lindner, A., Eggers, H.: Microscopic lock-in thermography investigation of leakage sites in integrated circuits. Revi Sci Instrum. 71, 4155 (2000)CrossRefGoogle Scholar
  53. 53.
    Ge, Z., Du, X., Yang, L., Yang, Y., Li, Y., Jin, Y.: Performance monitoring of direct air-cooled power generating unit with infrared thermography. Appl Therm Eng. 31, 418–424 (2011)CrossRefGoogle Scholar
  54. 54.
    Meola, C., Carlomagno, G.M., Squillace, A., Vitiello, A.: Non-destructive evaluation of aerospace materials with lock-in thermography. Eng. Fail. Anal. 13, 380–388 (2006)CrossRefGoogle Scholar
  55. 55.
    Menaka, M., Bagavathiappan, S., Venkatraman, B., Jayakumar, T., Raj, B.: Characterisation of adhesively bonded laminates using radiography and infrared thermal imaging techniques. Insight-Non-Destruct. Testi. Cond. Monit. 48, 606–612 (2006)CrossRefGoogle Scholar
  56. 56.
    Bagavathiappan, S., Lahiri, B., Saravanan, T., Philip, J., Jayakumar, T.: Infrared thermography for condition monitoring—a review. infrared Phys. Technol. 60, 35–55 (2013)CrossRefGoogle Scholar
  57. 57.
    Boyle, A., Adler, A.: The impact of electrode area, contact impedance and boundary shape on EIT images. Physiol. Meas. 32, 745 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Hongbo Dai
    • 1
    • 5
    Email author
  • Gerard J. Gallo
    • 2
    • 5
  • Thomas Schumacher
    • 3
  • Erik T. Thostenson
    • 2
    • 4
    • 5
  1. 1.Civil and Environmental EngineeringUniversity of DelawareNewarkUSA
  2. 2.Mechanical EngineeringUniversity of DelawareNewarkUSA
  3. 3.Civil and Environmental EngineeringPortland State UniversityPortlandUSA
  4. 4.Materials Science & EngineeringUniversity of DelawareNewarkUSA
  5. 5.Center for Composite MaterialsUniversity of DelawareNewarkUSA

Personalised recommendations