Skip to main content
Log in

Thermal (IR) and Other NDT Techniques for Improved Material Inspection

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Thermal nondestructive testing (TNDT) may be considered to be a more widely applicable method than many traditional techniques, such as X ray, ultrasonic, eddy current, liquid penetrant, etc. It can be applied to both metals and non-metals containing subsurface defects such as cracks, foreign inclusions, disbonds, delaminations, variations in thermal properties, etc. This is especially true for composite materials, and TNDT is very appropriate for screening purposes. TNDT test results may be analyzed by advanced image processing algorithms. This paper provides a concise review of composite NDT using TNDT in combination with other inspection techniques, providing an opportunity for data fusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Green, D.R.: An instrument for nondestructively testing fuel core to cladding heat transfer. Nucl. Sci. Eng. 12, 271–277 (1962)

  2. Green, D.R.: Emissivity-independent infrared thermal testing method. Mater. Eval. 23(2), 79–85 (1965)

    Google Scholar 

  3. Beller, W.S.: Navy sees promise in infrared thermography for solid case checking. Missiles Rockets 22, 1234–1241 (1965)

    Google Scholar 

  4. Carlomagno, G.M., Berardi, P.G.: Unsteady thermophototopography in nondestructive testing. In: Proceedings of 3rd biannual exchange, St. Louis, pp. 33–39. (1976)

  5. Rosencwaig, A., Gersho, A.: Thermal-wave imaging. Science 218, 223–228 (1982)

    Article  Google Scholar 

  6. Vavilov, V.P., Taylor, R.: Theoretical and practical aspects of the thermal NDT of bonded structures. In: Sharpe, R.S. (ed.) Research Techniques in NDT, vol. 5, pp. 239–279. Academic Press, London (1982)

    Google Scholar 

  7. Cielo, P.: Pulse photothermal evaluation of layered materials. J. Appl. Phys. 56(1), 230–234 (1984)

    Article  Google Scholar 

  8. Almond, D., Patel, P.: Photothermal Science and Techniques. Chapman & Hall, London (1996)

    Google Scholar 

  9. Willburn, D.K.: Survey of infrared inspection and measurement techniques. Mater. Res. Stand. 1, 528 (1961)

    Google Scholar 

  10. McGonnagle, W., Park, F.: Nondestructive testing. Intern. Sci. Technol. 7, 14 (1964)

    Google Scholar 

  11. Burleigh, D.: A bibliography of nondestructive testing (NDT) of composite materials performed with infrared thermography and liquid crystals. In: Proceeding of SPIE Thermosense-IX, vol. 780, pp. 250–255 (1987)

  12. Maldague, X.:Theory and Practice of Infrared Technology for Nondestructive Testing. Wiley Series in Microwave and Optical Engineering. Wiley, New York (2001)

  13. Balageas, D.L., Krapez, J.-C., Cielo, P.: Pulsed photo-thermal modeling of layered materials. J. Appl. Phys. 59(2), 348–357 (1986)

    Article  Google Scholar 

  14. Vavilov, V.P., Burleigh, D.D.: Review of pulsed thermal NDT: physical principles, theory and data processing. NDT E Int. 73, 28–52 (2015)

    Article  Google Scholar 

  15. Vavilov, V.: Thermal NDT: historical milestones, state-of-the-art and trends. Quant. Infrared Therm. J. 11(1), 66–83 (2014)

    Article  Google Scholar 

  16. Carpenter J.L., Stuhrke W.F. (1976) NDE - An effective approach to improved reliability and safety. A technology survey, Martin Marietts Corporation, Orlando, Florida, USA, N76 25375 (NASA CR 134963): 178

  17. Cawley, P.J.: Non-destructive testing–current capabilities and future directions. J. Mater. Des. Appl. 215, 213–223 (2001)

    Google Scholar 

  18. Cramer, K., Winfree, W., Hodges, K., Koshti, A., Ryan, D., Reinhard, WW.: Status of thermal NDT of space shuttle materials at NASA. In: Proceedings of SPIE “Thermosense-XXVIII”, vol. 6205, p. 62051B1-9 (2006)

  19. Burleigh D.A.: Portable, combined thermography/shearography NDT system for inspecting large composite structures. In: Proceeding of SPIE “Thermosense-XXIV” vol. 4710, pp. 578–587 (2002)

  20. Winfree, W.P.: Enhanced Thermographic Detection of Delaminations with Computational Pulse Shaping. Rev of Progress in Quant NDE, pp. 441–448. New York, Plenum Press (1998)

    Google Scholar 

  21. Pilla M., Galmiche F., Maldague M.: Thermographic inspection of cracked solar cells. In: Proceedings SPIE “Thermosense XXIV”, vol. 4710, pp. 699–703 (2002)

  22. Swiderski, W., Nesteruk, D.A., Vavilov, V.P., Derusova, D.A.: Data fusion in IR thermographic detection of landmines and NDT of composites. Atti della Fondazione Giorgio Ronchi, Anno LXIX, Edizione Tassinari, Firenze, Italy 4, 473–478 (2014)

  23. Grosso, M., Marinho, C.A., Nesteruk, D.A., Rebello, J.M., Soares, S.D., Vavilov, V.P.: Evaluating quality of adhesive joints in glass fiber plastic piping by using active thermal NDT. In: Proceedings of SPIE “Thermosense-XXXV”, vol. 8705, p. 87050T (2013)

  24. Roche, J.-M., Lamboul, B., Grail, G., Osmont, D., Balageas, D.: Thermal and ultrasonic damage monitoring and characterization in woven composites. In: 19th International Conference on Composite Materials (ICCM 19), Montreal, 2–11 (2013)

  25. Balageas, D., Levesque, P., Brunet, P., Cluzel, C., Déom, A., Blanchard, L.: Thermography as a routine diagnostic for mechanical testing of composites. Quant. InfraRed Therm. J. 5(1), 45–68 (2008)

    Article  Google Scholar 

  26. Balageas, D., Roche, J.-M., Leroy, F.-H., Liu, W.-M., Gorbach, A.: The thermographic signal reconstruction method: a powerful tool for the enhancement of transient thermographic images. Biocybern. Biomed. Eng. J. 35, 1–9 (2015)

    Article  Google Scholar 

  27. Balageas, D.: In search of early time. An original approach in the thermographic identification of the thermophysical properties and defects. Adv. Opt. Technol. doi:10.1155/2013/314906

  28. Roche, J.-M., Passilly, F., Leroy, F.-H., Lapeyronnie, P., Fagiano, G.: Thermal non-destructive characterization and in situ damage monitoring of a composite suspension wishbone. PhotoMechanics Conference, Delft (2015)

  29. Duan, Y., Servais, P., Genest, M., Ibarra-Castanedo, C., Maldague, X.P.V.: ThermoPoD: a reliability study on active infrared thermography for the inspection of composite materials. In: International Conference Materials and Reliability (ICMR 2011), Busan, Korea (2011)

  30. Duan, Y., Servais, P., Genest, M., Ibarra-Castanedo, C., Maldague, X.P.V.: ThermoPoD: a reliability study on active infrared thermography for the inspection of composite materials. J. Mech. Sci. Technol. 26(7), 1985–1992 (2012)

    Article  Google Scholar 

  31. Oswald-Tranta, B., O’Leary, P.: Fusion of geometric and thermographic data for automated defect detection. J. Electron. Imaging 21(2), 021108–021118 (2012)

    Article  Google Scholar 

  32. Henneke, E.G., Reifsnider, K.L., Stinchcomb, W.W.: Thermography, an NDI method for damage detection. J. Met. 31(9), 11–15 (1979)

    Google Scholar 

  33. Pye, C.J., Adams, R.D.J.: Heat emission from damaged materials and its use in nondestructive testing. J. Phys. D 14, 927 (1981)

    Article  Google Scholar 

  34. Mignona, R.B., Green Jr, R.E., Duke Jr, J.C.: Thermographic investigation of high-power ultrasonic heating in materials. Ultrasonics 19, 159–163 (1981)

    Article  Google Scholar 

  35. Zweschper, T., Dillenz, A., Busse, G.: Ultrasound lock-in thermography: a defect selective method for the inspection of aerospace components. Insight 43, 173–179 (2001)

    Google Scholar 

  36. Morbidini, M., Cawley, P., Barden, T., Almond, D.: Prediction of the thermosonic signal from fatigue cracks in metals using vibration damping measurements. J. Appl. Phys. 100, 104905 (2006). doi:10.1063/1.2361091

    Article  Google Scholar 

  37. Morbidini, M., Cawley, P.: A calibration procedure for sonic infrared nondestructive evaluation. J. Appl. Phys. 106, 023504-1–023504-7 (2009)

    Article  Google Scholar 

  38. Holland, S.D., Uhl, C., Ouyang, Z., Bantel, T., Li, M., Meeker, W.Q., Lively, J., Brasche, L.: Quantifying the vibrothermographic effect. NDT E Int. 44, 775–782 (2011)

    Article  Google Scholar 

  39. Guo, X., Vavilov, V.P.: Crack detection in aluminum parts by using ultrasound-excited infrared thermography. Infrared Phys. Technol. 61, 149–156 (2013)

    Article  Google Scholar 

  40. Sfarra, S., Ibarra-Castanedo, C., Avdelidis, N.P., Genest, M., Bouchagier, L., Kourousis, D., Tsimogiannis, A., Anastassopoulous, A., Bendada, A., Maldague, X., Ambrosini, D., Paoletti ,D.: A comparative investigation for the nondestructive testing of honeycomb structures by holographic interferometry and infrared thermography. 15th ICPPP, 24–28 July 2009, Leuven, Belgium. Publication. In: Journal of Physics: Conference Series 214 (2010): 012071 (2009)

  41. Ibarra-Castanedo, C., Piau, J.-M., Guilbert, S., Avdelidis, N.P., Genest, M., Bendada, A., Maldague, X.P.V.: Comparative study of active thermography techniques for the nondestructive evaluation of honeycomb structures. Res. Nondestruct. Eval. 20, 1–31 (2009)

    Article  Google Scholar 

  42. Genest, M., Forsyth, D.S., Maldague, X.: Comparison of solid highlighter materials for thermography. CINDE J. 28(4), 7–12 (2007)

    Google Scholar 

  43. Solodov, I., Rahammer, M., Derusova, D., Busse, G.: Highly-efficient and noncontact vibro-thermography via local defect resonance. Quant. Infrared Therm. J. 12(1), 98–111 (2015)

    Article  Google Scholar 

  44. Krapez, J.-C., Taillade, F., Balageas, D.: Ultrasound-lockin-thermography NDE of composite plates with low power actuators. Experimental investigation of the influence of the Lamb wave frequency. Quant. Infrared Therm. J. 2(2), 191–206 (2005)

    Article  Google Scholar 

  45. Riegert, G., Zweschper, T., Busse, G.: Lockin thermography with eddy current excitation. Quant. Infrared Therm. J. 1(1), 21–31 (2004)

    Article  Google Scholar 

  46. Oswald-Tranta, B.: Thermoinductive investigations of magnetic materials for surfacecracks. Quant. Infrared Therm. J. 1(1), 33–46 (2004)

    Article  Google Scholar 

  47. Riegert, G., Gleiter, A., Busse, G.: Potential and limitations of eddy current lockin-thermography. In: Proceedings of SPIE “Thermosense XXVIII”, vol. 6205, p. 62051E (2006). doi:10.1117/12.662716

  48. Oswald-Tranta, B., Sorger, M.: Detection of subsurface defects in aluminium with thermo-inductive inspection. In: Proceedings of SPIE, “Thermosense XXXIII”, vol. 8013, p. 801310 (2011). doi:10.1117/12.887193

  49. Oswald-Tranta, B., Sorger, M.: Scanning pulse phase thermography with line heating. Quant. Infrared Therm. J. 9(2), 103–122 (2012)

    Article  Google Scholar 

  50. Oswald-Tranta, B.: Thermo-inductive crack detection. J. Nondestruct. Test. Eval. 22(2–3), 137–153 (2007)

    Article  Google Scholar 

  51. Zenzinger, G., et al.: Thermographic crack detection by eddy current excitation. J. Nondestruct. Test. Eval. 22(2–3), 101–111 (2007)

    Article  Google Scholar 

  52. Wilson, J., et al.: Modelling and evaluation of eddy current stimulated thermography. J. Nondestruct. Test. Eval. 25(3), 205–218 (2010)

    Article  Google Scholar 

  53. Kremer, K., et al.: Das Therm-O-Matic-Verfahren - ein neuartiges Verfahren für die Online-prüfung von Stahlerzeugnissen auf Oberflächenfehler. Stahl Eisen 105, 39–44 (1985). (in German)

    Google Scholar 

  54. Oswald-Tranta, B., Sorger, M.: Localizing surface cracks with inductive thermographical inspection: from measurement to image processing. Quant. Infrared Therm. J. 8(2), 149–164 (2011)

    Article  Google Scholar 

  55. Oswald-Tranta, B., Schmidt, R.: Crack depth determination with inductive thermography. In: Proceeding SPIE “Thermosense XXXVII”, vol. 9485, pp. 9485–9512 (2015)

  56. Maldague, X., Marinetti, S.: Pulse phase infrared thermography. J. Appl. Phys. 79(5), 2694–2698 (1996)

    Article  Google Scholar 

  57. Tran-Gia, P., Maldague, X., Birglen, L.: Crack detection limit in eddy current thermography. In: ASNT Spring Research Conference, pp. 1–6 (2013)

  58. Carslaw and Jaeger: Conduction of Heat in Solids. Clarendon Press, Oxford (1959)

    Google Scholar 

  59. Hasegawa, T.: A New Method of Observing Electromagnetic Fields at High Frequencies by Use of Test Paper. Bulletin of Yamagata University IV, Yamagata (1955)

    Google Scholar 

  60. Gregoris, L., Iizuka, K.: Thermography in microwave holography. Appl. Opt. 14(7), 1487–1489 (1975)

    Article  Google Scholar 

  61. Sega, R.M., Benkelman, C.A., Norgard, J.D.: Measurements of antenna patterns at 94 GHz using infrared detection. In: Proceedings SPIE “Millimeter Wave Technology III”, vol. 544, pp. 234–240 (1985)

  62. Norgard, J., Musselman, R.: Direct infrared measurement of phase array near-field and far-field antenna patterns. Quant. Infrared Therm. J. 2(1), 113–125 (2005)

    Article  Google Scholar 

  63. Balageas, D., Levesque, P.: EMIR: a photothermal tool for electromagnetic phenomena characterization. Rev. Gén. Therm. 37(8), 725–739 (1998)

    Article  Google Scholar 

  64. Balageas, D., Bourasseau, S., Dupont, M., Bocherens, E.: Dewynter-Marty V. Comparison between nondestructive evaluation techniques and integrated fiber optic health monitoring systems for composite sandwich structures. J. Intell. Mat. Syst. Struct. 11, 426–437 (2000)

    Article  Google Scholar 

  65. Balageas, D., Levesque, P., Nacitas, M., Krapez, J.-C., Gardette, G., Lemistre, M.: Microwaves holography revealed by photothermal films and lock-in IR thermography: application to electromagnetic materials NDE. In: Proceeedings of SPIE “Aging infrastructure and manufacturing 96 Symposium—Nondestructive evaluation of materials and composites”. vol. 2944, pp. 55–66 (1996)

  66. Balageas, D., Levesque, P.: Mines detection using the EMIR method. In: Proceedings of QIRT’02 Conference Dubrovnik 24–27, 2002. QIRT Open Archives, http://www.qirt.org/dynamique/index.php?idD=44 (2002)

  67. Matveenko, A.N., Medvedev, L.E., Miginsky, S.V., Mironenko, L.A., Ovchar, V.K., Popik, V.M., Salikova, T.V., Scheglov, M.A., Serednyakov, S.S., Shevchenko, O.A., Skrinsky, A.N., Tcheskidov, V.G., Vinokurov, N.A.: Research highlights from the Novosibirsk 400 W average power THz FEL. Terahertz Sci. Technol. 1(2), 107–125 (2008)

    Google Scholar 

  68. Pradere, C., Caumes, J.P., Balageas, D., Salort, S., Abraham, E., Chassagne, B., Batsale, J.-C.: Photothermal converters for quantitative 2D and 3D real-time TeraHertz imaging. Quant. Infrared Therm. J. 7(2), 217–235 (2010)

    Article  Google Scholar 

  69. Chulkov, A.O., Gaverina, L., Pradere, C., Batsale, J.-C., Vavilov, V.P.: Detecting hidden water in honeycomb composite structures by using Terahertz thermography. Russ. J. NDT (2015)

  70. Ibarra-Castanedo C., Genest M., Maldague X. (2013) Infrared vision: visual inspection beyond the visible spectrum. Integrated Imaging and Vision Techniques for Industrial Inspection: Advances and Applications, Zheng Liu Ed., Springer, New York (2013)

  71. Pilla, M., Klein, M., Maldague, X., Salerno, A.: New absolute contrast for pulsed thermography. Proc. QIRT 2002, 53–58 (2002)

    Google Scholar 

  72. Shepard, S.M.: Advances in pulsed thermography. In: Proceedings of SPIE “Thermosense XXVIII”, vol. 4360, pp. 511–515 (2001)

  73. Rajic, N.: Principal component thermography for flaw contrast enhancement and flaw depth characterisation in composite structures. Compos. Struct. 58, 521–528 (2002)

    Article  Google Scholar 

  74. López, F., Nicolau, V., Maldague, X., Ibarra-Castanedo, C.: Multivariate signal processing by partial least-squares thermography.In: Proceedings of 7th IWASPNDE, Quebec, Canada pp. 29–34 (2014)

  75. http://www.qirt.orgunderarchives

  76. Kriksunov, L.Z.: Handbook on the Basics of Infrared Technique. Sovetskoye radio Publisher, Moscow (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Maldague.

Additional information

This article is part of the Topical Collection on Thermography.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balageas, D., Maldague, X., Burleigh, D. et al. Thermal (IR) and Other NDT Techniques for Improved Material Inspection. J Nondestruct Eval 35, 18 (2016). https://doi.org/10.1007/s10921-015-0331-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-015-0331-7

Keywords

Navigation