Skip to main content

Remote Real Time Monitoring for Underground Contamination in Mongolia Using Electrical Impedance Tomography

Abstract

Mongolia’s abundant natural resources have driven much recent economic development and with it the need for an underground contamination monitoring system. For instance, the fast growth of the mining industry coincides with underground contamination caused by petrol, copper tailings, mercury, etc. These contaminants are highly electrically conductive, and can therefore be assessed by electrical impedance tomography (EIT). This non-destructive and inexpensive method can visualize the conductivity distribution of a target area, and is suited for use in Mongolia. A number of electrodes are placed on the ground surface to induce currents and to measure the resulting voltages. We introduce a new electrode configuration, and use the local projective conductivity image method to monitor the near-surface area. Additionally, conventional EIT is used to monitor areas deeper underground. The collected voltage data can be used for both algorithms–separate measurements are not required–allowing near real-time monitoring for underground contamination.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. 1.

    Barber, D.C., Brown, B.H.: Applied potential tomography. J. Phys. Sci. Instrum. 17, 723–733 (1984)

    Article  Google Scholar 

  2. 2.

    Cheney, M., Isaacson, D., Newell, J.C.: Electrical impedance tomography. SIAM Rev. 41, 85–101 (1999)

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Clay, R.B.: Conductivity survey: a survival manual. In: Johnson, J.K. (ed.) Remote Sensing in Archaeology: An Explicitly North American Perspective, pp. 80–107. University of Alabama Press, Tuscaloosa (2006)

    Google Scholar 

  4. 4.

    D’Antona, G., Rocca, L.: Electrical impedance tomography for underground pollutant detection and polluted lands reclaiming monitoring. In: IEEE Instrumentation and Measurement Technology Conference Anchorage, AK, USA, 21–23 May 2002

  5. 5.

    Grellier, S., Guerin, R., Robain, H., Bobachev, A., Vermeersch, F., Tabbagh, A.: Monitoring of leachate recirculation in a bioreactor landfill by 2-D electrical resistivity imaging. J. Environ. Eng. Geophys. 13(4), 351–360 (2008)

  6. 6.

    Hanke, M., Harrach, B., Hyvönen, N.: Justification of point electrode models in electrical impedance tomography. Math. Models Methods Appl. Sci. 21, 1395–1413 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Metherall, P., Barber, D.C., Smallwood, R.H., Brown, B.H.: Three-dimensional electrical impedance tomography. Nature 380, 509–512 (1996)

    Article  Google Scholar 

  8. 8.

    Mining in Mongolia: http://en.wikipedia.org/wiki/Mining_in_Mongolia. Accessed 22 Nov 2014

  9. 9.

    Ramirez, A., Daily, W., LaBreque, D., Owen, E., Chesnut, D.: Monitoring an underground steam injection process using electrical resistance tomography. Water Resour. Res. 29, 73–77 (1993)

    Article  Google Scholar 

  10. 10.

    Reports of the UN experts’ mission to Khongor sum, Darkhan-Uul aming. http://bic.iwlearn.org/en. Accessed 15 Aug 2008

  11. 11.

    Seo, J.K., Woo, E.J.: Nonlinear Inverse Problems in Imaging. Wiley Press (2012)

  12. 12.

    Ts, M.-E., Lee, E., Seo, J.K., Harrach, B., Kim, S.: Projective electrical impedance reconstruction with two measurements. SIAM J. Appl. Math. 73(4), 1659–1675 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Tsourlos, P., Ogilvy, R.D., Meldrum, P.I., Williams, G.M.: Time-lapse monitoring in single boreholes using electrical resistivity tomography. J. Environ. Eng. Geophys. 8(1), 1–14 (2003)

    Article  Google Scholar 

  14. 14.

    Waxman, M.H., Smits, J.M.: Electrical conductivities in oil-bearing shaly sand. Soc. Pet. Eng. J. 243, 107–122 (1968)

    Article  Google Scholar 

  15. 15.

    Webster, J.: Electrical Impedance Tomography. Adam Hilger, Bristol (1990)

    Google Scholar 

  16. 16.

    Wilkinson, P.B., Meldrum, P.I., Kuras, O., Chambers, J.E., Holyoake, S.J., Ogilvy, R.D.: High-resolution electrical resistivity tomography monitoring of a tracer test in a confined aquifer. J. Appl. Geophys. 70(4), 268–276 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by NRF Grant 2015 R1A5A1009350.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eunjung Lee.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ts, ME., Lee, E., Zhou, L. et al. Remote Real Time Monitoring for Underground Contamination in Mongolia Using Electrical Impedance Tomography. J Nondestruct Eval 35, 8 (2016). https://doi.org/10.1007/s10921-015-0325-5

Download citation

Keywords

  • Underground contamination
  • Electrical impedance tomography
  • Long-term remote monitoring

Mathematics Subject Classification

  • 65Z99