A Comparison Between Time-of-Arrival and Novel Phased Array Approaches to Estimate Acoustic Emission Source Locations in a Steel Plate

Article
  • 244 Downloads

Abstract

An important step in quantitative acoustic emission (AE) monitoring is the estimation of the temporal and spatial coordinates of the source. In this paper, we describe and compare two AE source location approaches: traditional time of arrival and a novel circular phased array. Both of these approaches have their strengths and limitations depending on the application. The novelty of our phased array approach is that we employ two circular arrays, which enables us to estimate the location rather than only the direction of the source, a limitation of traditional phased array approaches that only use one array. Results of laboratory experiments performed on a steel plate according to ASTM E647 using novel multi-sensor sheets to record the AE signals are presented and discussed for both approaches. Each sheet was equipped with a dense array of piezoelectric discs laminated on a polyimide substrate. The sheets were mounted on one side of the steel plate and pencil lead breaks applied to the other side representing artificial sources of AE. The results are presented and discussed and a comparison between the performances of the two approaches is provided.

Keywords

Acoustic emission Source location estimate Circular phased array Piezoelectric Multi-sensor sheet  Pencil lead break 

References

  1. 1.
    Yu, J., Ziehl, P.: Detection of critical fatigue cracks in steel bridge materials with remote acoustic emission monitoring. In: ASCE Proceedings, pp. 123–132 (2011)Google Scholar
  2. 2.
    Giordano, M., Calabro, A., Esposito, C., Salucci, C., Nicolais, L.: Analysis of acoustic emission signals resulting from fiber breakage in single fiber composites. Polym. Compos. 20(6), 758–770 (1999)CrossRefGoogle Scholar
  3. 3.
    Spasova, L.M., Ojovan, M.I.: Acoustic emission detection of microcrack formation and development in cementitious wasteforms with immobilised Al. J. Hazard. Mater. 138(3), 423–432 (2006)CrossRefGoogle Scholar
  4. 4.
    Geiger, L.: Herdbestimmung bei Erdbeben aus den Ankunftzeiten. Nachrichten von der Gesellschaft der Wissenschaften zu Gottingen. Mathematisch-Physikalische Klasse 4, 331–349 (1912) (Translated to English by Peebles, FWL, Corey, AH probability method for the determination of earthquake epicenters from the arrival time only. Bulletin St. Louis University 8, 60–71 (1912))Google Scholar
  5. 5.
    Belchamber, R., Collins, M.: Acoustic emission source location using simplex optimization. J. Acous. Emiss. 9(4), 271–276 (1990)Google Scholar
  6. 6.
    Kennett, B.L.N., Marson-Pidgeon, K., Sambridge, M.S.: Seismic source characterization using a neighbourhood algorithm. Geophy. Res. Lett. 27(20), 3401–3404 (2000)CrossRefGoogle Scholar
  7. 7.
    Antolik, M., Ekstrom, G., Dziewonski, A.M.: Global event location with full and sparse data sets using three-dimensional models of mantle P-wave velocity. In: Monitoring the Comprehensive Nuclear-Test-Ban Treaty: Source Location, pp. 291–317. Springer, Berlin, Germany (2001)Google Scholar
  8. 8.
    Chen, J.C., Hudson, R.E., Yao, K.: Maximum-likelihood source localization and unknown sensor location estimation for wideband signals in the near-field. IEEE Trans. Signal Process. 50(8), 1843–1854 (2002)CrossRefGoogle Scholar
  9. 9.
    Dong, L., Tang, X., Li, L., Gong, F.: Mathematical functions and parameters for microseismic source location without premeasuring speed. Chin. J. Rock Mech. Eng. 30(10), 2057–2067 (2011)Google Scholar
  10. 10.
    Huang, W., Zhang, W., Li, F.: Acoustic emission source location using a distributed feedback fiber laser rosette. Sensors 3(10), 14041–14054 (2013)CrossRefGoogle Scholar
  11. 11.
    Aljets, D., Chong, A., Wilcox, S., Holford, K.: Acoustic emission source location in plate-like structures using a closely arranged triangular sensor array. J. Acoust. Emiss. 28(1), 85–98 (2010)Google Scholar
  12. 12.
    Schumacher, T., Straub, D., Higgins, C.: Toward a probabilistic acoustic emission source location algorithm: a Bayesian approach. J. Sound Vib. 331(19), 4233–4245 (2012)CrossRefGoogle Scholar
  13. 13.
    Ge, M.: Analysis of source location algorithms part i: overview and non-iterative methods. J. Acoust. Emiss. 21(1), 14–24 (2003)Google Scholar
  14. 14.
    Ge, M.: Analysis of source location algorithms part ii: iterative methods. J. Acoust. Emiss. 21(1), 29–51 (2003)Google Scholar
  15. 15.
    Jihui, L., Gang, G.: Improving source location accuracy of acoustic emission in complicated structures. J. Nondestr. Eval. 28(1), 1–8 (2009)CrossRefGoogle Scholar
  16. 16.
    Eaton, M.J., Pullin, R., Holford, K.M.: Acoustic emission source location in composite materials using Delta T mapping. Compos. Part A Appl. Sci. Manuf. 43(6), 856–863 (2012)CrossRefGoogle Scholar
  17. 17.
    Mccrory, J.P., Pullin, R., Pearson, M., Eaton, M.J., Featherston, C.A., Holford, K.M.: Effect of Delta-T grid resolution on acoustic emission source location in glare. In: 30th European Conference on Acoustic Emission Testing & 7th International Conference on Acoustic Emission University of Granada, 12–15 September 2012. www.ndt.net/EWGAE-ICAE2012/ (2012)
  18. 18.
    Schechinger, B.: Schallemissionsanalyse zur Überwachung der Schädigung von Stahlbeton. Institut für Baustatik und Konstruktion. Zurich, Switzerland, Eidgenössische Technische Hochschule (ETH) Zürich. PhD (2006)Google Scholar
  19. 19.
    Braun, K.F.: Nobel Lecture: Electrical Oscillations and Wireless Telegraphy. Nobelprize.org. Nobel Media AB 2013. Retrieved 21 Oct 2013 (1909)Google Scholar
  20. 20.
    Sachse, W.H., Sancar, S.: Acoustic emission source location on plate-like structures using a small array of transducers. US Patent #4,592,034 (1986)Google Scholar
  21. 21.
    He, T., Pan, Q., Liu, Y., Liu, X., Hu, D.: Near-field beamforming analysis for AE source localization. Ultrasonics 52, 587–592 (2012)CrossRefGoogle Scholar
  22. 22.
    Nakatani, H., Hajzargarbashi, T., Ito, K., Kundu, T., Takeda, N.: Locating point of impact on an anisotropic cylindrical surface using acoustic beamforming technique. In: \(4^{{\rm th}}\) Asia-Pacific Workshop on Structural Health Monitoring, Melbourne, Australia, 5–7 December (2012)Google Scholar
  23. 23.
    Xiao, D., He, T., Pan, Q., Liu, X., Wang, J., Shan, Y.: A novel acoustic emission beamforming method with two uniform linear arrays on plate-like structures. Ultrasonics 54, 737–745 (2014)CrossRefGoogle Scholar
  24. 24.
    McLaskey, G.C., Glaser, S.D., Grosse, C.U.: Beamforming array techniques for acoustic emission monitoring of large concrete structures. J. Sound Vib. 329, 2384–2394 (2010)CrossRefGoogle Scholar
  25. 25.
    Linzer, L., Mhamdi, L., Schumacher, T.: Applications of a moment tensor inversion code developed for mining-induced seismicity to fracture monitoring of civil engineering Materials. J. Appl. Geophys. 112, 256–267 (2015)Google Scholar
  26. 26.
    Grosse, C., Reinhardt, H., Dahm, T.: Localization and classification of fracture types in concrete with quantitative acoustic emission measurement techniques. NDT & E Int. 30(4), 223–230 (1997)CrossRefGoogle Scholar
  27. 27.
    Li, J., Qi, G.: Improving source location accuracy of acoustic emission in complicated structures. J. Nondestruct. Eval. 28(1), 1–8 (2009)CrossRefGoogle Scholar
  28. 28.
    Ohtsu, M.: Simplified moment tensor analysis and unified decomposition of acoustic emission source: application to in situ hydrofracturing test. J. Geophys. Res. 96(B4), 6211–6221 (1991)CrossRefGoogle Scholar
  29. 29.
    Maeda, N.: A method for reading and checking phase times in auto-processing system of seismic wave data. Zisin Jishin 38, 365–379 (1985)Google Scholar
  30. 30.
    Akaike, H.: A new look at the statistical model identification. IEEE Trans. Autom. Control 19(6), 716–723 (1974)MATHMathSciNetCrossRefGoogle Scholar
  31. 31.
    Kurz, J.H., Grosse, C.U., Reinhardt, H.W.: Strategies for reliable automatic onset time picking of acoustic emission and of ultrasound signals in concrete. Ultrasonics 43, 538–546 (2005)CrossRefGoogle Scholar
  32. 32.
    Weedon, W.H.: Phased array digital beamforming hardware development at Applied Radar. In: 2010 IEEE International Symposium on Radar Phased Array Systems and Technology (ARRAY), pp. 854–859 (2010)Google Scholar
  33. 33.
    Gaikwad, N., Krishna, R.: A digital multiple beam forming for phased array RADARs with parallel array processing. IOSR J. VLSI Signal Process. 4(1), 22–28 (2014)CrossRefGoogle Scholar
  34. 34.
    Helzel, T., Helzel, M.G., Kniephoff, M., Petersen, L., Mariette, V., Thomas, N.: Accuracy and reliability of ocean radar WERA in beam forming or direction finding mode. In: 10th IEEE/OES on Current, Waves and Turbulence Measurements (CWTM), 2011, pp. 21–24 (2011)Google Scholar
  35. 35.
    Szasz, T., Basarab, A., Vaida, M.F., Kouamé, D.: Beamforming with sparse prior in ultrasound medical imaging. In: IEEE International on Ultrasonics Symposium (IUS), 2014, pp. 1077–1080 (2014)Google Scholar
  36. 36.
    Balanis, C.A.: Antenna Theory Analysis and Design. John Wiley & Sons Inc, Hoboken (2009)Google Scholar
  37. 37.
    Hamstad, M.A.: Some Observations on Rayleigh Waves and Acoustic Emission in Thick Steel Plates. NIST, Gaithersburg (2009)Google Scholar
  38. 38.
    Glisic, B., Verma, N.: Very dense arrays of sensors for SHM based on large area electronics, structural health monitoring 2011: Condition-based maintenance and intelligent structures—In: Proceedings of the 8th International Workshop on Structural Health Monitoring, vol. 2, pp. 1409–1416 (2011)Google Scholar
  39. 39.
    Tung, S.T., Yao, Y., Glisic, B.: Sensing sheet: the sensitivity of thin-film full-bridge strain sensors for crack detection and characterization. Meas. Sci. Technol. 25(7), 075602 (2014)CrossRefGoogle Scholar
  40. 40.
    ASTM E647-11e1: Standard Test Method for Measurement of Fatigue Crack Growth Rates. ASTM International, West Conshohocken (2010)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Civil and Environmental EngineeringUniversity of DelawareNewarkUSA
  2. 2.Civil and Environmental EngineeringPortland State UniversityPortlandUSA

Personalised recommendations