Skip to main content

Innovative NDT Technique Based on Ferrofluids for Detection of Surface Cracks


An innovative NDT technique is proposed for surface inspection of materials not necessarily magnetic or conductive, based on local magnetic field variations due to ferrofluid deposited in the cracks. The feasibility of the technique is assessed preliminarily, based on signal detectability without applied external magnetic field, and under applied DC fields. The signals (local magnetic flux density variations) are quantified analytically, experimentally and numerically. The model agrees well with the tests, showing that the signal increases with the applied field strength, up to the saturation magnetization of the ferrofluid, and decreases with the distance to the crack longitudinal axis, and thus it can provide useful estimations of the signal. The proposed technique, requiring application of external fields to magnetize the ferrofluid to enhance the signal, seems promising: the model suggests that signals associated to cracks significantly smaller than surface cracks in a target application like aircraft skin panel inspection NASA STD-5009 are easily detectable with commercial magnetometers.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. Global Industry Analysts Inc.: Nondestructive Test Equipment: A Global Strategic Business Report. Global Industry Analysts Inc., San Jose (2011)

  2. Frost & Sullivan.: World NDT Inspection Services Market: An Indestructible Future. Frost & Sullivan, London (2011)

  3. Sanchez, J.H., Rinaldi, C.: Rotational Brownian dynamics simulations of non-interacting magnetized ellipsoidal particles in d.c. and a.c. magnetic fields. J. Magn. Magn. Mater. 321(19), 2985–2991 (2009). doi:10.1016/j.jmmm.2009.04.066

    Article  Google Scholar 

  4. Vreugdenhil, A.J., Balbyshev, V.N., Donley, M.S.: Nanostructured silicon sol-gel surface treatments for Al 2024–T3 protection. J. Coat. Technol. 73(915), 35–43 (2001)

    Article  Google Scholar 

  5. Starke, E.A., Staley, J.T.: Application of modern aluminum alloys to aircraft. Prog. Aerosp. Sci. 32(2–3), 131–172 (1996)

    Article  Google Scholar 

  6. NASA: NASA STD-5009: Nondestructive Evaluation Requirements for Fracture Critical Metallic Components. NASA, Washington (2008)

  7. Swift T: FAA-AIR-90-01: Repairs to Damage Tolerant Aircraft. Federal Aviation Administration (FAA), Atlanta (1990)

  8. Nesterenko, G.I.: Designing the airplane structure for high durability. In: AIAA Int Air Space Symposium Exposition: The Next 100 Years, vol. 2785. Dayton (2003)

  9. Swift, T.: Fracture Analysis of Stiffened Structure. In: Chang, J.B., Rudd, J.L. (eds.) Damage Tolerance of Metallic Structures: Analysis Methods and Applications, ASTM STP 842, 1st edn, pp. 69–107. ASTM, Philadelphia (1984)

    Chapter  Google Scholar 

  10. Duven, J.E.: FAA Advisory Circular (AC)-25.571-1D Damage Tolerance and Fatigue Evaluation of Structure (2011)

  11. Calero-DdelC, V.L., Rinaldi, C.: Synthesis and magnetic characterization of cobalt-substituted ferrite (\({\rm {Co_{x}}{Fe_{3-x}}{O_4}}\)) nanoparticles. J. Magn. Magn. Mater. 314(1), 60–67 (2007). doi:10.1016/j.jmmm.2006.12.030

    Article  Google Scholar 

  12. Herrera, A.P., Rodriguez, M., Torres-Lugo, M., Rinaldi, C.: Multifunctional magnetite nanoparticles coated with fluorescent thermo-responsive polymeric shells. J. Mater. Chem. 18(8), 855–858 (2008). doi:10.1039/b718210d

    Article  Google Scholar 

  13. Qiu, Z.Q., Du, Y.W., Tang, H., Walker, J.C.: A Mossbauer study of fine iron particles. J. Appl. Phys. 63(8), 4100–4104 (1988). doi:10.1063/1.340508

    Article  Google Scholar 

  14. Gangopadhyay, S., Hadjipanayis, G.C., Dale, B., et al.: Magnetic properties of ultrafine iron particles. Phys. Rev. B 45(17), 9778–9787 (1992)

    Article  Google Scholar 

  15. Woo, K., Hong, J., Choi, S., et al.: Easy synthesis and magnetic properties of iron oxide nanoparticles. Chem. Mater. 16(8), 2814–2818 (2004). doi:10.1021/cm049552x

    Article  Google Scholar 

  16. Grimm, S., Schultz, M., Barth, S., Muller, R.: Flame pyrolysis: a preparation route for ultrafine pure gamma-\({\rm Fe_2}{\rm O_3}\) powders and the control of their particle size and properties. J. Mater. Sci. 32(4), 1083–1092 (1997)

    Article  Google Scholar 

  17. Tsuda, N., Nasu, K., Fujimori, A., Siratori, K.: Electronic Conduction in Oxides, 2nd edn. Springer, Berlin (2000)

    Book  Google Scholar 

  18. Peng, Z., Hwang, J., Mouris, J., et al.: Microwave penetration depth in materials with non-zero magnetic susceptibility. ISIJ Int. 50(11), 1590–1596 (2010)

    Article  Google Scholar 

  19. Rosenholtz, J.L., Smith, D.T.: The dielectric constant of mineral powders. Am. Miner. 21(2), 115 (1936)

    Google Scholar 

  20. Robinson, D.A., Gardner, C.M.K., Cooper, J.D.: Measurement of relative permittivity in sandy soils using TDR, capacitance and theta probes: comparison, including the effects of bulk soil electrical conductivity. J. Hydrol. 223(3–4), 198–211 (1999). doi:10.1016/S0022-1694(99)00121-3

    Article  Google Scholar 

  21. Zakinyan, A., Dikansky, Y.: Drops deformation and magnetic permeability of a ferrofluid emulsion. Colloids Surf. A Physicochem. Eng. Asp. 380(1–3), 314–318 (2011). doi:10.1016/j.colsurfa.2011.03.018

    Article  Google Scholar 

  22. Tian, G.Y., He, Y., Adewale, I., Simm, A.: Research on spectral response of pulsed eddy current and NDE applications. Sens. Actuators A 189, 313–320 (2013). doi:10.1016/j.sna.2012.10.011

    Article  Google Scholar 

  23. Lee, E.W., Oppenheim, T., Robinson, K., et al.: The effect of thermal exposure on the electrical conductivity and static mechanical behavior of several age hardenable aluminum alloys. Eng. Fail. Anal. 14(8), 1538–1549 (2007). doi:10.1016/j.engfailanal.2006.12.008

    Article  Google Scholar 

  24. Ibrahim, N.M., Fattah, I.H.A.: Narrow-beam aluminum-mirrored fiber optical-taps with controllable tapped power. IEEE J. Sel. Top Quantum Electron 2(2), 221–225 (1996). doi:10.1109/2944.577366

  25. Kanayama, H., Tagami, D., Imoto, K., Sugimoto, S.: Finite element computation of magnetic field problems with the displacement current. J. Comput. Appl. Math. 159(1), 77–84 (2003). doi:10.1016/S0377-0427(03)00560-0

    MATH  MathSciNet  Article  Google Scholar 

  26. Karmel, P.R., Colef, G.D., Camisa, R.L.: Introduction to Electromagnetic and Microwave Engineering. Wiley, New York (1998)

    Google Scholar 

  27. Soto-Aquino, D., Rinaldi, C.: Transient magnetoviscosity of dilute ferrofluids. J. Magn. Magn. Mater. 323(10), 1319–1323 (2011). doi:10.1016/j.jmmm.2010.11.038

    Article  Google Scholar 

  28. Wiedenmann, A., Gähler, R., Dewhurst, C.D., et al.: Relaxation mechanisms in magnetic colloids studied by stroboscopic spin-polarized small-angle neutron scattering. Phys. Rev. B 84(21), 214303 (2011). doi:10.1103/PhysRevB.84.214303

    Article  Google Scholar 

  29. Reitz, J.R., Milford, F.J., Christy, R.W.: Fundamentals of the Theory of Electromagnetism, pp. 1–641. Addison-Wesley Iberoamericana, Wilmington (1996)

    Google Scholar 

  30. Brown, G.V., Flax, L.: Superposition of semi-infinite solenoids for calculating magnetic fields of thick solenoids. J. Appl. Phys. 35(6), 1764–1767 (1964)

    Article  Google Scholar 

Download references


Work supported by the MINECO Grant FIS2014-54734-P and the Generalitat de Catalunya/AGAUR Grant 2014SGR00581. We want to thank also the support by Dr. O. Casas, and the helpful comments and feedback from the reviewers.

Author information

Authors and Affiliations


Corresponding author

Correspondence to J. I. Rojas.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rojas, J.I., Cabrera, B., Musterni, G. et al. Innovative NDT Technique Based on Ferrofluids for Detection of Surface Cracks. J Nondestruct Eval 34, 36 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


  • Surface flaw
  • Magnetic particle
  • Ferrofluid
  • Aluminium alloys
  • Composite materials