Skip to main content

Advertisement

Log in

Comparative Study of State of the Art Nondestructive Testing Methods with the Local Acoustic Resonance Spectroscopy to Detect Damages in GFRP

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

This paper evaluates and compares the application of current state of the art methods and the new local acoustic resonance spectroscopy (LARS) method for nondestructive evaluation of damages in glass fiber reinforced polymers. The innovation of the LARS is the combination of the analysis of the acoustic signals and the force excitation. Generic plates of a standardized material (Vetronit EGS 619) and segments of rotor blades of wind turbines were tested. The generic specimens, 2 and 6 mm in thickness, were damaged with various impact energies caused by a spherical impactor with a diameter of 16 mm, which generated impact damages ranging from barely visible to clearly visible on the generic specimen as well as on segments of real rotorblades of windturbines. The impacts have been measured to account for damage diameter, form and area, indentation depth and bulge height. In addition, blind holes of different depths have been drilled to assess the depth of penetration of the methods tested. As observed in scientific literature as well as in current research, impact damages exhibit a peanut-shaped damage area when impacted with minimum threshold energy. The current research tested several of the specimens using X-ray computed tomography as a reference measurement. These results were compared to the data obtained by ultrasonic methods, LARS and optical lock-in thermography. Finally, all methods have been applied to evaluate rotor blades of wind turbines. The results are shortly discussed in respect to practical applications and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Abrate, S.: Impact on Composite Structure. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  2. Meola, C., Carlomagno, G.M.: Impact damage in GFRP: new insights with infrared thermography. Compos. A 41, 1839 (2010). doi:10.1016/j.compositesa.2010.09.002

    Article  Google Scholar 

  3. Caprino, G., Lopresto, V., Langella, A., Leone, C.: Damage and energy absorption in GFRP laminates impacted at low-velocity: indentation model. Eng. Proc. (2011). doi:10.1016/j.proeng.2011.04.380

  4. Davies, G.A.O., Hitching, D., Wang, J.: Prediction of threshold impact energy for onset of delamination in quasi-isotropic carbon/epoxy composite laminates under low-velocity impact. Compos. Sci. Technol. 60, 1–7 (2000)

    Article  Google Scholar 

  5. Hou, J.P., Petrinic, N., Ruiz, C., Hallet, S.R.: Prediction of impact damage in composite plates. Compos. Sci. Technol. 60, 273–281 (2000)

    Article  Google Scholar 

  6. Richardson, M., Wishheart, M.: Review of low velocity impact properties of composite materials. Compos. A 27, 1123–1131 (1994)

    Article  Google Scholar 

  7. Ramasamy, P., Sampathkumar, S., Prsath, P.: Experimental Investigation of Impact damage on woven GFRP Composite Laminate using acoustic emission and Ultrasonic Technique. In: Proceedings of the National Seminar & Exhibition of Non-Destructive Evaluation. pp. 55–59 (2011)

  8. Scarponi, C., Briotti, G.: Ultrasonic technique for the evaluation of delaminations on CFRP, GFRP. KFRP composite materials. Compos. B 31, 237–243 (1999)

    Article  Google Scholar 

  9. Schürmann, H.: Konstruieren mit Faser-Kunststoff-Verbunden. Springer, Darmstadt (2007)

    Google Scholar 

  10. Liu, D.: Impact-induced delamination—a view of bending stiffness mismatching. J. Compos. Mater. (1988). doi:10.1177/002199838802200706

  11. Choong, W.H., Yeo, K.B., Fadzlita, M.T.: Impact damage behaviour of woven glass fibre reinforced polymer composite. J. Appl. Sci. (2011). doi:10.3923/jas.2011.2440.2443

  12. Cantwell, W.: Geometrical effects in the low velocity impact response of GFRP. Compos. Sci. Technol. (2006). doi:10.1016/j.compscitech.2006.10.015

  13. Jüngert, A.: Untersuchung von GFK Bauteilen mit akustischen Verfahren am Beispiel der Rotorblätter von Windenergieanlagen. Dissertation, Universität Stuttgart (2010)

  14. Jüngert, A.: Local acoustic resonance spectroscopy (LARS) for glass fiber-reinforced polymer application. J. Nondestruct. Eval. doi:10.10/1007/s10921-013-0199-3 (2013)

  15. Jüngert, A., et al.: Zerstörungsfreie robotergestützte Untersuchung von Rotorblätter von Windenergieanlagen mit Ultraschall und Thermographie. ZFP Ztg. 115, 43–49 (2009)

  16. Pfund, B.: Portable test hammer apparatus. US Patent 5,686,652, Appl. No.: 08/707,851 (1997)

  17. Olson, L. et al.: Scanning apparatus and method for non-destructive materials evaluation and mapping through use of acoustic waves. US Patent Number 5,404,755, Appl. No.:867,248 (1995)

  18. JR Technology Limited. Development of the Woodpecker Tap Tester (2012)

  19. Krautkrämer, J., Krautkrämer, H.: Werkstoffprüfung mit Ultraschall. Springer, Köln (1966)

    Book  Google Scholar 

  20. Lin, S.: Study on the high power air coupled ultrasonic compound transducer. Ultrasonics (2006). doi:10.1016/j.ultras.2006.05.120

  21. Revel, G., Pandarese, G., Cavuto, A.: The development of a shock-tube based characterization technique for air-coupled ultrasonic probes. Ultrasonic 54(6), 1545–1552 (2014)

    Article  Google Scholar 

  22. Gaun, X. et al.: Post processing of phased array ultrasonic inspection data with parallel computing for nondestructive evaluation. J. Nondestruct. Eval. (2014). doi:10.1007/s10921-013-0219-3

  23. Huang, J., Que, P.W., Jin, J.H.: A parametric study of beam steering for ultrasonic linear phased array transducer. Russ. J. Nondestruct. Test. 40(4), 46–53 (2004)

    Article  Google Scholar 

  24. Balk, S.: Status und Trends in der Entwicklung von Material- und Fertigungskonzepten für Rotorblätter von Windkraftanlagen. IABG mbH, München (2011)

    Google Scholar 

  25. Zell, H.: Verfahren zur Überprüfung des baulichen Zustands von Windkraftanlagen. EP 2 631 476 A2, Mühlheim an der Ruhr (2013)

  26. Zell, H., Carl, V.: Wind Turbine Inspection New Methods of Remote Nondestructive Inspection of Rotorblades. Wilhelmshaven (2012)

  27. Wobben, A.: Method for monitoring wind power plants, US Patent 6,785,637, Appl. No.: 10/089,774 (2001)

  28. Fernandes, R.A.: Monitoring system for power lines and right of way using remotely piloted drone. US Patent 4,818,990, Appl. No.:95,152 (1989)

Download references

Acknowledgments

The authors thank Prof. Dr. Ing. Bernhard U. Seeber, M.Sc. Gaetano Andreisek, Dipl. Ing. Benedikt Rauh for the support in execution of the testing and Mr. Otto Lutz for his advices from fields. The research has been financed by and executed at IABG mbH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Hornfeck.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hornfeck, C., Geiss, C., Rücker, M. et al. Comparative Study of State of the Art Nondestructive Testing Methods with the Local Acoustic Resonance Spectroscopy to Detect Damages in GFRP. J Nondestruct Eval 34, 10 (2015). https://doi.org/10.1007/s10921-015-0283-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-015-0283-y

Keywords

Navigation