Review of Second Harmonic Generation Measurement Techniques for Material State Determination in Metals

  • K. H. Matlack
  • J.-Y. Kim
  • L. J. Jacobs
  • J. Qu


This paper presents a comprehensive review of the current state of knowledge of second harmonic generation (SHG) measurements, a subset of nonlinear ultrasonic nondestructive evaluation techniques. These SHG techniques exploit the material nonlinearity of metals in order to measure the acoustic nonlinearity parameter, \(\beta \). In these measurements, a second harmonic wave is generated from a propagating monochromatic elastic wave, due to the anharmonicity of the crystal lattice, as well as the presence of microstructural features such as dislocations and precipitates. This article provides a summary of models that relate the different microstructural contributions to \(\beta \), and provides details of the different SHG measurement and analysis techniques available, focusing on longitudinal and Rayleigh wave methods. The main focus of this paper is a critical review of the literature that utilizes these SHG methods for the nondestructive evaluation of plasticity, fatigue, thermal aging, creep, and radiation damage in metals.


Second harmonic generation Microstructural evolution in metal Nonlinear ultrasonic measurements 



The authors would like to acknowledge funding received from the DOE Office of Nuclear Energy’s Nuclear Energy University Programs.


  1. 1.
    Breazeale, M.A., Thompson, D.O.: Finite-amplitude ultrasonic waves in aluminum. Appl. Phys. Lett. 3, 77–78 (1963)CrossRefGoogle Scholar
  2. 2.
    Breazeale, M.A., Ford, J.: Ultrasonic studies of the nonlinear behavior of solids. J. Appl. Phys. 36, 3486–3490 (1965)CrossRefGoogle Scholar
  3. 3.
    Gedroitz, A.A., Krasilnikov, V.A.: Elastic waves of finite amplitude and deviationsfrom Hook’s law. Sov. Phys. JETP (Engl. Transl.) 16, 1122–1131 (1963)Google Scholar
  4. 4.
    Hikata, A., Chick, B.B., Elbaum, C.: Dislocation contribution to the second harmonic generation of ultrasonic waves. J. Appl. Phys. 36, 229–236 (1965)CrossRefGoogle Scholar
  5. 5.
    Hikata, A., Elbaum, C.: Generation of ultrasonic second and third harmonics due to dislocations. I. Phys. Rev. 144, 469–477 (1966)CrossRefGoogle Scholar
  6. 6.
    Gauster, W.B., Breazeale, M.A.: Ultrasonic measurement of the nonlinearity parameters of copper single crystals. Phys. Rev. 168, 655–661 (1968)CrossRefGoogle Scholar
  7. 7.
    Yost, W.T., Cantrell, J.H., Breazeale, M.A.: Ultrasonic nonlinearity parameters and third-order elastic constants of copper between 300 and 3 \(^\circ K\). J. Appl. Phys. 52, 126–128 (1981)CrossRefGoogle Scholar
  8. 8.
    Thompson, D.O., Buck, O., Barnes, R.S., Huntington, H.B.: Diffusional properties of the stage-III defect in copper. I. Experimental results. J. Appl. Phys. 38, 3051–3056 (1967)CrossRefGoogle Scholar
  9. 9.
    Thompson, D.O., Buck, O., Huntington, H.B., Barnes, P.S.: Diffusional properties of the stage-III defect in copper. II. A model for defect–dislocation interactions. J. Appl. Phys. 38, 3057 (1967)Google Scholar
  10. 10.
    Thompson, D.O., Buck, O.: Diffusional properties of the stage-III defect in copper. III. Bulk diffusion. J. Appl. Phys. 38, 3068 (1967)CrossRefGoogle Scholar
  11. 11.
    Gauster, W.B., Breazeale, M.A.: Detector for measurement of ultrasonic strain amplitudes in solids. Rev. Sci. Instrum. 37, 1544–1548 (1966)CrossRefGoogle Scholar
  12. 12.
    Thompson, R.B., Buck, O., Thompson, D.O.: Higher harmonics of finite amplitude ultrasonic waves in solids. J. Acoust. Soc. Am. 59, 1087–1094 (1976)CrossRefGoogle Scholar
  13. 13.
    Yost, W.T., Breazeale, M.A.: Adiabatic third-order elastic constants of fused silica. J. Appl. Phys. 44, 1909–1910 (1973)CrossRefGoogle Scholar
  14. 14.
    Hurley, D.C., Fortunko, C.M.: Determination of the nonlinear ultrasonic parameter \(\beta \) using a Michelson interferometer. Meas. Sci. Technol. 8, 634–642 (1997)CrossRefGoogle Scholar
  15. 15.
    Cantrell, J.H., Breazeale, M.A.: Ultrasonic investigation of the nonlinearity of fused silica for different hydroxyl-ion contents and homogeneities between 300 and 3K. Phys. Rev. B. 17, 4864–4870 (1978)CrossRefGoogle Scholar
  16. 16.
    Cantrell, J.H.: Fundamentals and applications of nonlinear ultrasonic nondestructive evaluation. In: Kundu, T. (ed.) Ultrasonic Nondestructive Evaluation, pp. 363–434. CRC Press, Boca Raton (2004)Google Scholar
  17. 17.
    Nagy, P.B.: Fatigue damage assessment by nonlinear ultrasonic materials characterization. Ultrasonics 36, 375–381 (1998)CrossRefGoogle Scholar
  18. 18.
    Guyer, R.A., Johnson, P.A.: Nonlinear mesoscopic elasticity: evidence for a new class of materials. Phys. Today 52, 30–36 (1999)CrossRefGoogle Scholar
  19. 19.
    Payan, C., Garnier, V., Moysan, J., Johnson, P.A.: Applying nonlinear resonant ultrasound spectroscopy to improving thermal damage assessment in concrete. J. Acoust. Soc. Am. 121, EL125 (2007)CrossRefGoogle Scholar
  20. 20.
    Van Den Abeele, K.E.-A., Carmeliet, J., Ten Cate, J.A., Johnson, P.A.: Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material damage, part II: single-mode nonlinear resonance acoustic spectroscopy. Res. Nondestruct. Eval. 12, 31–42 (2000)Google Scholar
  21. 21.
    Ballad, E.M., Vezirov, S.Y., Pfleiderer, K., Solodov, I.Y., Busse, G.: Nonlinear modulation technique for NDE with air-coupled ultrasound. Ultrasonics 42, 1031–1036 (2004)CrossRefGoogle Scholar
  22. 22.
    Van Den Abeele, K.E.-A., Johnson, P.A., Sutin, A.: Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material damage, part i: nonlinear wave modulation spectroscopy (NWMS). Res. Nondestruct. Eval. 12, 17–30 (2000)CrossRefGoogle Scholar
  23. 23.
    Anderson, B.E., Griffa, M., Larmat, C., Ulrich, T.J., Johnson, P.A.: Time reversal. Acoust. Today 4, 5–16 (2008)CrossRefGoogle Scholar
  24. 24.
    Larmat, C.S., Guyer, R.A., Johnson, P.A.: Time-reversal methods in geophysics. Phys. Today 63(8), 31–35 (2010)CrossRefGoogle Scholar
  25. 25.
    Croxford, A.J., Wilcox, P.D., Drinkwater, B.W., Nagy, P.B.: The use of non-collinear mixing for nonlinear ultrasonic detection of plasticity and fatigue. J. Acoust. Soc. Am. 126, EL117–EL122 (2009)CrossRefGoogle Scholar
  26. 26.
    Liu, M., Tang, G., Jacobs, L.J., Qu, J.: Measuring acoustic nonlinearity parameter using collinear wave mixing. J. Appl. Phys. 112, 024908 (2012)CrossRefGoogle Scholar
  27. 27.
    Jhang, K.: Nonlinear ultrasonic techniques for non-destructive assessment of micro damage in material: a review. Int. J. Precis. Eng. Manuf. 10, 123–135 (2009)Google Scholar
  28. 28.
    Zheng, Y., Maev, R.G., Solodov, I.Y.: Review/synthèse nonlinear acoustic applications for material characterization: a review. Can. J. Phys. 77, 927–967 (2000)Google Scholar
  29. 29.
    Cantrell, J.H.: Crystalline structure and symmetry dependence of acoustic nonlinearity parameters. J. Appl. Phys. 76, 3372 (1994)CrossRefGoogle Scholar
  30. 30.
    Norris, A.N.: Finite-amplitude waves in solids. In: Hamilton, M.F., Blackstock, D.T. (eds.) Nonlinear Acoust., pp. 263–277. Academic Press, San Diego (1998)Google Scholar
  31. 31.
    Shui, Y., Solodov, I.Y.: Nonlinear properties of Rayleigh and Stoneley waves in solids. J. Appl. Phys. 64, 6155 (1988)CrossRefGoogle Scholar
  32. 32.
    De Lima, W.J.N., Hamilton, M.F.: Finite-amplitude waves in isotropic elastic plates. J. Sound Vib. 265, 819–839 (2003)CrossRefGoogle Scholar
  33. 33.
    Barnard, D.J., Dace, G.E., Buck, O.: Acoustic harmonic generation due to thermal embrittlement of Inconel 718. J. Nondestruct. Eval. 16, 67–75 (1997)Google Scholar
  34. 34.
    Rogers, P.H., Van Buren, A.L.: An exact expression for the Lommel diffraction correction integral. J. Acoust. Soc. Am. 55, 724–728 (1974)zbMATHCrossRefGoogle Scholar
  35. 35.
    Shull, D.J., Kim, E.E., Hamilton, M.F., Zabolotskaya, E.A.: Diffraction effects in nonlinear Rayleigh wave beams. J. Acoust. Soc. Am. 97, 2126–2137 (1995)CrossRefGoogle Scholar
  36. 36.
    Ingenito, F., Williams, A.O.: Calculation of second-harmonic generation in a piston beam. J. Acoust. Soc. Am. 49, 319–328 (1971)CrossRefGoogle Scholar
  37. 37.
    Zabolotskaya, E.A.: Nonlinear propagation of plane and circular Rayleigh waves in isotropic solids. J. Acoust. Soc. Am. 91, 2569–2575 (1992)CrossRefGoogle Scholar
  38. 38.
    Herrmann, J., Kim, J.-Y., Jacobs, L.J., Qu, J., Littles, J.W., Savage, M.F.: Assessment of material damage in a nickel-base superalloy using nonlinear Rayleigh surface waves. J. Appl. Phys. 99, 124913 (2006)CrossRefGoogle Scholar
  39. 39.
    Hurley, D.C.: Nonlinear propagation of narrow-band Rayleigh waves excited by a comb transducer. J. Acoust. Soc. Am. 106, 1782–1788 (1999)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Torello, D., Thiele, S., Matlack, K., Kim, J.-Y., Qu, J., Jacobs, L.J.: Diffraction, attenuation, and source corrections for nonlinear Rayleigh wave ultrasonic measurements. Ultrasonics 56, 417–426 (2015)Google Scholar
  41. 41.
    Thiele, S., Kim, J., Qu, J., Jacobs, L.J.: Air-coupled detection of nonlinear rayleigh surface waves to assess material nonlinearity. Ultrasonics 54, 1470–1475 (2014)CrossRefGoogle Scholar
  42. 42.
    Walker, S.V., Kim, J.-Y., Qu, J., Jacobs, L.J.: Fatigue damage evaluation in A36 steel using nonlinear Rayleigh surface waves. NDT E Int. 48, 10–15 (2012)CrossRefGoogle Scholar
  43. 43.
    Ruiz, A., Ortiz, N., Medina, A., Kim, J.-Y., Jacobs, L.J.: Application of ultrasonic methods for early detection of thermal damage in 2205 duplex stainless steel. NDT E Int. 54, 19–26 (2013)CrossRefGoogle Scholar
  44. 44.
    Hikata, A., Sewell, F.A., Elbaum, C.: Generation of ultrasonic second and third harmonics due to dislocations II. Phys. Rev. 151, 442–449 (1966)CrossRefGoogle Scholar
  45. 45.
    Cantrell, J.H., Yost, W.T.: Nonlinear ultrasonic characterization of fatigue microstructures. Int. J. Fatigue 23, S487–S490 (2001)CrossRefGoogle Scholar
  46. 46.
    Cantrell, J.H.: Substructural organization, dislocation plasticity and harmonic generation in cyclically stressed wavy slip metals. Proc. R. Soc. Lond. Ser. A. 460, 757–780 (2004)zbMATHCrossRefGoogle Scholar
  47. 47.
    Cantrell, J.H., Zhang, X.-G.: Nonlinear acoustic response from precipitate-matrix misfit in a dislocation network. J. Appl. Phys. 84, 5469–5472 (1998)CrossRefGoogle Scholar
  48. 48.
    Cantrell, J.H., Yost, W.T.: Determination of precipitate nucleation and growth rates from ultrasonic harmonic generation. Appl. Phys. Lett. 77, 1952–1954 (2000)CrossRefGoogle Scholar
  49. 49.
    Hurley, D.C., Balzar, D., Purtscher, P.T.: Nonlinear ultrasonic assessment of precipitation hardening in ASTM A710 steel. J. Mater. Res. 15, 2036–2042 (2000)CrossRefGoogle Scholar
  50. 50.
    Biwa, S., Hiraiwa, S., Matsumoto, E.: Experimental and theoretical study of harmonic generation at contacting interface. Ultrasonics 44, e1319–e1322 (2006)CrossRefGoogle Scholar
  51. 51.
    Cantrell, J.H.: Quantitative assessment of fatigue damage accumulation in wavy slip metals from acoustic harmonic generation. Philos. Mag. 86, 1539–1554 (2006)CrossRefGoogle Scholar
  52. 52.
    Nazarov, V.E., Sutin, A.M.: Nonlinear elastic constants of solids with cracks. J. Acoust. Soc. Am. 102, 3349–3354 (1997)CrossRefGoogle Scholar
  53. 53.
    Suzuki, T., Hikata, A., Elbaum, C.: Anharmonicity due to glide motion of dislocations. J. Appl. Phys. 35, 2761 (1964)zbMATHCrossRefGoogle Scholar
  54. 54.
    Granato, A., Lücke, K.: Theory of mechanical damping due to dislocations. J. Appl. Phys. 27, 583–593 (1956)zbMATHCrossRefGoogle Scholar
  55. 55.
    Cash, W.D., Cai, W.: Dislocation contribution to acoustic nonlinearity: the effect of orientation-dependent line energy. J. Appl. Phys. 109, 014915 (2011)CrossRefGoogle Scholar
  56. 56.
    Zhang, J., Xuan, F., Xiang, Y.: Dislocation characterization in cold rolled stainless steel using nonlinear ultrasonic techniques: a comprehensive model. Europhys. Lett. 103, 68003 (2013)CrossRefGoogle Scholar
  57. 57.
    Zhang, J., Xuan, F.: A general model for dislocation contribution to acoustic nonlinearity. Europhys. Lett. 105, 54005 (2014)CrossRefGoogle Scholar
  58. 58.
    Viswanath, A., Rao, B.P.C., Mahadevan, S., Parameswaran, P., Jayakumar, T., Raj, B.: Nondestructive assessment of tensile properties of cold worked AISI type 304 stainless steel using nonlinear ultrasonic technique. J. Mater. Process. Technol. 211, 538–544 (2011)CrossRefGoogle Scholar
  59. 59.
    Chen, Z., Qu, J.: Dislocation-induced acoustic nonlinearity parameter in crystalline solids. J. Appl. Phys. 114, 164906 (2013)CrossRefGoogle Scholar
  60. 60.
    Cash, W.D., Cai, W.: Contribution of dislocation dipole structures to the acoustic nonlinearity. J. Appl. Phys. 111, 074906 (2012)CrossRefGoogle Scholar
  61. 61.
    Cantrell, J.H., Yost, W.T.: Acoustic harmonic-generation from fatigue-induced dislocation dipoles. Philos. Mag. A. 69, 315–326 (1994)CrossRefGoogle Scholar
  62. 62.
    Apple, T.M., Cantrell, J.H., Amaro, C.M., Mayer, C.R., Yost, W.T., Agnew, S.R., Howe, J.M.: Acoustic harmonic generation from fatigue-generated dislocation substructures in copper single crystals. Philos. Mag. 93, 2802–2825 (2013)CrossRefGoogle Scholar
  63. 63.
    Cantrell, J.H.: Ultrasonic harmonic generation from fatigue-induced dislocation substructures in planar slip metals and assessment of remaining fatigue life. J. Appl. Phys. 106, 1–6 (2009)Google Scholar
  64. 64.
    Thiele, S.: Air-coupled detection of Rayleigh surface waves to asses material nonlinearity due to precipitation in alloy steel. Master’s Thesis, Georgia Institute of Technology (2013)Google Scholar
  65. 65.
    Eringen, A.C.: Mechanics of Continua. Robert E. Krieger Publishing Company, Huntington (1980)Google Scholar
  66. 66.
    Thiele, S., Matlack, K.H., Kim, J.-Y., Qu, J., Wall, J.J., Jacobs, L.J.: Assessment of precipitation in alloy steel using nonlinear Rayleigh surface waves. destructive Evaluation, vol. 1581, pp. 682–689. AIP Publishing (2014)Google Scholar
  67. 67.
    Martin, J.W.: Precipitation Hardening. Permagon Press, Oxford (1968)Google Scholar
  68. 68.
    Hirose, S., Achenbach, J.D.: Higher harmonics in the far field due to dynamic crack-face contacting. J. Acoust. Soc. Am. 93, 142–147 (1993)CrossRefGoogle Scholar
  69. 69.
    Johnson, K.L.: Contact mechanics. Cambridge University Press, Cambridge (1985)zbMATHCrossRefGoogle Scholar
  70. 70.
    Greenwood, J.A., Williamson, J.: Contact of nominally flat surfaces. Proc. R. Soc. Lond. Ser. A. 295, 300–319 (1966)CrossRefGoogle Scholar
  71. 71.
    Kim, J.-Y., Lee, J.-S.: A micromechanical model for nonlinear acoustic properties of interfaces between solids. J. Appl. Phys. 101, 043501 (2007)CrossRefGoogle Scholar
  72. 72.
    Pecorari, C.: Adhesion and nonlinear scattering by rough surfaces in contact: beyond the phenomenology of the Preisach-Mayergoyz framework. J. Acoust. Soc. Am. 116, 1938–1947 (2004)CrossRefGoogle Scholar
  73. 73.
    Breazeale, M.A., Philip, J.: Determination of third-order elastic constants from ultrasonic harmonic generation measurements. In: Mason, W.P., Thurston, R.N. (eds.) Physical Acoustics, vol. XVII, pp. 1–60. Academic Press, New York (1984)Google Scholar
  74. 74.
    Kim, J.-Y., Jacobs, L.J., Qu, J., Littles, J.W.: Experimental characterization of fatigue damage in a nickel-base superalloy using nonlinear ultrasonic waves. J. Acoust. Soc. Am. 120, 1266–1273 (2006)CrossRefGoogle Scholar
  75. 75.
    Matlack, K.H., Wall, J.J., Kim, J.-Y., Qu, J., Jacobs, L.J., Viehrig, H.-W.: Evaluation of radiation damage using nonlinear ultrasound. J. Appl. Phys. 111, 054911 (2012)CrossRefGoogle Scholar
  76. 76.
    Matlack, K.H., Kim, J.-Y., Wall, J.J., Qu, J., Jacobs, L.J., Sokolov, M.A.: Sensitivity of ultrasonic nonlinearity to irradiated, annealed, and re-irradiated microstructure changes in RPV steels. J. Nucl. Mater. 448, 26–32 (2014)CrossRefGoogle Scholar
  77. 77.
    Adler, E.L., Bridoux, E., Coussot, G., Dieulesaint, E.: Harmonic generation of acoustic surface waves in Bi12GeO20 and LiNbO3. IEEE Trans. Sonics Ultrason. 20, 13–16 (1973)CrossRefGoogle Scholar
  78. 78.
    Shull, D.J., Hamilton, M.F., Il’insky, Y.A., Zabolotskaya, E.A.: Harmonic generation in plane and cylindrical nonlinear Rayleigh waves. J. Acoust. Soc. Am. 94, 418–427 (1993)CrossRefGoogle Scholar
  79. 79.
    Barnard, D.J., Brasche, L.J.H., Raulerson, D., Degtyar, A.D.: Monitoring fatigue damage accumulation with rayleigh wave harmonic generation measurements. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, pp. 1393–1400. AIP, New York (2003)Google Scholar
  80. 80.
    Liu, M., Kim, J.-Y., Jacobs, L.J., Qu, J.: Experimental study of nonlinear Rayleigh wave propagation in shot-peened aluminum plates—feasibility of measuring residual stress. NDT E Int. 44, 67–74 (2011)CrossRefGoogle Scholar
  81. 81.
    Blackshire, J.L., Sathish, S., Na, J.K., Frouin, J.: Nonlinear laser ultrasonic measurements of localized fatigue damage. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, pp. 1479–1488. AIP, New York (2003)Google Scholar
  82. 82.
    Bermes, C., Kim, J.-Y., Qu, J., Jacobs, L.J.: Experimental characterization of material nonlinearity using Lamb waves. Appl. Phys. Lett. 90, 021901 (2007)CrossRefGoogle Scholar
  83. 83.
    Deng, M., Pei, J.: Assessment of accumulated fatigue damage in solid plates using nonlinear Lamb wave approach. Appl. Phys. Lett. 90, 121902–121903 (2007)CrossRefGoogle Scholar
  84. 84.
    Pruell, C., Kim, J.-Y., Qu, J., Jacobs, L.J.: Evaluation of fatigue damage using nonlinear guided waves. Smart Mater. Struct. 18, 035003 (7 pp.) (2009)Google Scholar
  85. 85.
    Matlack, K.H., Kim, J.-Y., Jacobs, L.J., Qu, J.: Experimental characterization of efficient second harmonic generation of Lamb wave modes in a nonlinear elastic isotropic plate. J. Appl. Phys. 109, 014905 (2011)CrossRefGoogle Scholar
  86. 86.
    Frouin, J., Sathish, S., Matikas, T.E., Na, J.K.: Ultrasonic linear and nonlinear behavior of fatigued Ti-6Al-4V. J. Mater. Res. 14, 1295–1298 (1998)CrossRefGoogle Scholar
  87. 87.
    Viswanath, A., Rao, B.P.C., Mahadevan, S., Jayakumar, T., Baldev, R.: Microstructural characterization of M250 grade maraging steel using nonlinear ultrasonic technique. J. Mater. Sci. 45, 6719–6726 (2010)CrossRefGoogle Scholar
  88. 88.
    Cantrell, J.H., Salama, K.: Acoustoelastic characterization of materials. Int Mater Rev. 36, 125–145 (1991)CrossRefGoogle Scholar
  89. 89.
    Yost, W.T., Cantrell, J.H.: Anomalous nonlinearity parameters of solids at low acoustic drive amplitudes. Appl. Phys. Lett. 94, 021905 (2009)CrossRefGoogle Scholar
  90. 90.
    Moreau, A.: Detection of acoustic second harmonics in solids using a heterodyne laser interferometer. J. Acoust. Soc. Am. 98, 2745–2752 (1995)CrossRefGoogle Scholar
  91. 91.
    Yost, W.T., Cantrell, J.H., Kushnick, P.W.: Fundamental aspects of pulse phase-locked loop technology-based methods for measurement of ultrasonic velocity. J. Acoust. Soc. Am. 91, 1456–1468 (1992)CrossRefGoogle Scholar
  92. 92.
    Dace, G.E., Thompson, R.B., Buck, O.: Measurement of the acoustic harmonic generation for materials characterization using contact transducers. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, pp. 2069–2076. Plenium Press, New York (1992)Google Scholar
  93. 93.
    Dace, G.E., Thompson, R.B., Brasche, L.J.H., Rehbein, D.K., Buck, O.: Nonlinear acoustics, a technique to determine microstructural changes in materials. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of progress in quantitative nondestructive evaluation, pp. 1685–1692. Plenum Press, New York (1991)CrossRefGoogle Scholar
  94. 94.
    Li, P., Yost, W.T., Cantrell, J.H., Salama, K.: Dependence of acoustic nonlinearity parameter on second phase. IEEE Ultrasonics Symposium. pp. 1113–1115 (1985)Google Scholar
  95. 95.
    Yost, W.T., Cantrell, J.H.: The effects of artificial aging of aluminum 2024 on its nonlinearity parameter. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, pp. 2067–2073. Plenum Press, New York (1993)CrossRefGoogle Scholar
  96. 96.
    Sun, L., Kulkarni, S.S., Achenbach, J.D., Krishnaswamy, S.: Technique to minimize couplant-effect in acoustic nonlinearity measurements. J. Acoust. Soc. Am. 120, 2500–2505 (2006)CrossRefGoogle Scholar
  97. 97.
    Baby, S., Kowmudi, B.N., Omprakash, C.M., Satyanarayana, D.V.V., Balasubramaniam, K., Kumar, V.: Creep damage assessment in titanium alloy using a nonlinear ultrasonic technique. Scr. Mater. 59, 818–821 (2008)CrossRefGoogle Scholar
  98. 98.
    Nucera, C., Lanza di Scalea, F.: Nonlinear wave propagation in constrained solids subjected to thermal loads. J. Sound Vib. 333, 541–554 (2014)CrossRefGoogle Scholar
  99. 99.
    Hurley, D.C., Balzar, D., Purtscher, P.T., Hollman, K.W.: Nonlinear ultrasonic parameter in quenched martensitic steels. J. Appl. Phys. 83, 4584–4588 (1998)CrossRefGoogle Scholar
  100. 100.
    Li, W., Cho, Y., Lee, J., Achenbach, J.D.: Assessment of heat treated inconel X-750 alloy by nonlinear ultrasonics. Exp. Mech. 53, 775–781 (2012)CrossRefGoogle Scholar
  101. 101.
    Kim, C.S., Park, I.K., Jhang, K.-Y.: Nonlinear ultrasonic characterization of thermal degradation in ferritic 2.25Cr-1Mo steel. NDT&E Int. 42, 204–209 (2009)CrossRefGoogle Scholar
  102. 102.
    Liu, S., Croxford, A.J., Neild, S.A., Zhou, Z.: Effects of experimental variables on the nonlinear harmonic generation technique. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 58, 1442–1451 (2011)CrossRefGoogle Scholar
  103. 103.
    Na, J.K., Breazeale, M.A.: Ultrasonic nonlinear properties of lead zicronate-titanate ceramics. J. Acoust. Soc. Am. 95, 3213–3221 (1994)CrossRefGoogle Scholar
  104. 104.
    Barnard, D.J.: Variation of nonlinearity parameter at low fundamental amplitudes. Appl. Phys. Lett. 74, 2447 (1999)CrossRefGoogle Scholar
  105. 105.
    Cantrell, J.H., Yost, W.T.: Determination of Peierls stress from acoustic harmonic generation. Philos. Mag. Lett. 92, 128–132 (2012)CrossRefGoogle Scholar
  106. 106.
    Cantrell, J.H.: Nonlinear dislocation dynamics at ultrasonic frequencies. J. Appl. Phys. 105, 1–7 (2009)CrossRefGoogle Scholar
  107. 107.
    Yost, W.T., Cantrell, J.H.: Absolute ultrasonic displacement amplitude measurements with a submersible electrostatic acoustic transducer. Rev. Sci. Instrum. 63, 4182 (1992)CrossRefGoogle Scholar
  108. 108.
    Yost, W.T., Breazeale, M.A.: Ultrasonic nonlinearity parameters and third-order elastic constants of germanium between 300 and 77K. Phys. Rev. B. 9, 510–516 (1974)CrossRefGoogle Scholar
  109. 109.
    Hess, P., Lomonosov, A.M., Mayer, A.P.: Laser-based linear and nonlinear guided elastic waves at surfaces (2D) and wedges (1D). Ultrasonics. 54, 39–55 (2014)CrossRefGoogle Scholar
  110. 110.
    Green, R.E.: Non-contact ultrasonic techniques. Ultrasonics 42, 9–16 (2004)CrossRefGoogle Scholar
  111. 111.
    Stratoudaki, T., Hernandez, J.A., Clark, M., Somekh, M.G.: Cheap optical transducers (CHOTs) for narrowband ultrasonic applications. Meas. Sci. Technol. 18, 843–851 (2007)CrossRefGoogle Scholar
  112. 112.
    Collison, I.J., Stratoudaki, T., Clark, M., Somekh, M.G.: Measurement of elastic nonlinearity using remote laser ultrasonics and CHeap Optical Transducers and dual frequency surface acoustic waves. Ultrasonics 48, 471–477 (2008)CrossRefGoogle Scholar
  113. 113.
    Stratoudaki, T., Ellwood, R., Sharples, S., Clark, M., Somekh, M.G., Collison, I.J.: Measurement of material nonlinearity using surface acoustic wave parametric interaction and laser ultrasonics. J. Acoust. Soc. Am. 129, 1721–8 (2011)CrossRefGoogle Scholar
  114. 114.
    Ellwood, R., Stratoudaki, T., Sharples, S.D., Clark, M., Somekh, M.G.: Determination of the acoustoelastic coefficient for surface acoustic waves using dynamic acoustoelastography: An alternative to static strain. J. Acoust. Soc. Am. 135, 1064–1070 (2014)Google Scholar
  115. 115.
    Shui, G., Kim, J.-Y., Qu, J., Wang, Y.-S., Jacobs, L.J.: A new technique for measuring the acoustic nonlinearity of materials using Rayleigh waves. NDT E Int. 41, 326–329 (2008)CrossRefGoogle Scholar
  116. 116.
    Shui, G., Wang, Y.: Ultrasonic evaluation of early damage of a coating by using second- harmonic generation technique. J. Appl. Phys. 111, 124902 (2012)CrossRefGoogle Scholar
  117. 117.
    Rao, V.V.S.J., Kannan, E., Prakash, R.V., Balasubramaniam, K.: Fatigue damage characterization using surface acoustic wave nonlinearity in aluminum alloy AA7175-T7351. J. Appl. Phys. 104, 123508 (2008)CrossRefGoogle Scholar
  118. 118.
    Morris, W.L., Buck, O., Inman, R.V.: Acoustic harmonic generation due to fatigue damage in high-strength aluminum. J. Appl. Phys. 50, 6737–6741 (1979)CrossRefGoogle Scholar
  119. 119.
    Ogi, H., Hirao, M., Aoki, S.: Noncontact monitoring of surface-wave nonlinearity for predicting the remaining life of fatigued steels. J. Appl. Phys. 90, 438–442 (2001)CrossRefGoogle Scholar
  120. 120.
    Cobb, A., Capps, M., Duffer, C., Feiger, J., Robinson, K., Hollingshaus, B.: Nonlinear ultrasonic measurements with EMATs for detecting pre-cracking fatigue damage. In: Thomson, D.O. and Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation. pp. 299–306. AIP Publishing (2012)Google Scholar
  121. 121.
    Castaings, M., Cawley, P.: The generation, propagation, and detection of Lamb waves in plates using air-coupled ultrasonic transducers. J. Acoust. Soc. Am. 100, 3070–3077 (1996)CrossRefGoogle Scholar
  122. 122.
    Wright, W.M.D., Hutchins, D.A., Hayward, G., Gachagan, A.: Ultrasonic imaging using laser generation and piezoelectric air-coupled detection. Ultrasonics 34, 405–409 (1996)CrossRefGoogle Scholar
  123. 123.
    Zhu, J., Popovics, J.: Non-contact detection of surface waves in concrete using an air-coupled sensor. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, pp. 1261–1268. American Institute of Physics, Melville, NY (2002)Google Scholar
  124. 124.
    Tuzzeo, D., di Scalea, F.L.: Noncontact air-coupled guided wave ultrasonics for detection of thinning defects in aluminum plates. Res. Nondestruct. Eval. 13, 61–77 (2001)CrossRefGoogle Scholar
  125. 125.
    Grandia, W.A., Fortunko, C.M.: NDE applications of air-coupled ultrasonic transducers. IEEE Ultrason. Symp. 1, 697–709 (1995)Google Scholar
  126. 126.
    Deighton, M.O., Gillespie, A.B., Pike, R.B., Watkins, R.D.: Mode conversion of Rayleigh and Lamb waves to compression waves at a metal-liquid interface. Ultrasonics 19, 249–258 (1981)CrossRefGoogle Scholar
  127. 127.
    Bender, F.A., Kim, J.-Y., Jacobs, L.J., Qu, J.: The generation of second harmonic waves in an isotropic solid with quadratic nonlinearity under the presence of a stress-free boundary. Wave Motion. 50, 146–161 (2013)MathSciNetCrossRefGoogle Scholar
  128. 128.
    Buck, O., Morris, W.L., Richardson, J.M.: Acoustic harmonic generation at unbonded interfaces and fatigue cracks. Appl. Phys. Lett. 33, 371–373 (1978)CrossRefGoogle Scholar
  129. 129.
    Yost, W.T., Cantrell, J.H.: The effects of fatigue on acoustic nonlinearity in aluminum alloys. IEEE Ultrason. Symp. 947–955 (1992)Google Scholar
  130. 130.
    Cantrell, J.H.: Dependence of microelastic-plastic nonlinearity of martensitic stainless steel on fatigue damage accumulation. J. Appl. Phys. 100, 063508 (2006)CrossRefGoogle Scholar
  131. 131.
    Kulkarni, S.S., Sun, L., Moran, B., Krishnaswamy, S., Achenbach, J.D.: A probabilistic method to predict fatigue crack initiation. Int. J. Fract. 137, 9–17 (2006)zbMATHCrossRefGoogle Scholar
  132. 132.
    Kulkarni, S.S., Achenbach, J.D.: Structural health monitoring and damage prognosis in fatigue. Struct. Heal. Monit. 7, 37–49 (2008)CrossRefGoogle Scholar
  133. 133.
    Jhang, K.-Y., Kim, K.-C.: Evaluation of material degradation using nonlinear acoustic effect. Ultrasonics 37, 39–44 (1999)CrossRefGoogle Scholar
  134. 134.
    Na, J.K., Yost, W.T., Cantrell, J.H.: Linear and nonlinear ultrasonic properties of fatigued 410CB stainless steel. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, p. 1347. Plenum Press, New York (1996)CrossRefGoogle Scholar
  135. 135.
    Kumar, A., Torbet, C.J., Jones, J.W., Pollock, T.M.: Nonlinear ultrasonics for in situ damage detection during high frequency fatigue. J. Appl. Phys. 106, 024904 (2009)CrossRefGoogle Scholar
  136. 136.
    Kumar, A., Adharapurapu, R.R., Jones, J.W., Pollock, T.M.: In situ damage assessment in a cast magnesium alloy during very high cycle fatigue. Scr. Mater. 64, 65–68 (2011)CrossRefGoogle Scholar
  137. 137.
    Kumar, A., Torbet, C.J., Pollock, T.M.: Wayne Jones, J.: In situ characterization of fatigue damage evolution in a cast Al alloy via nonlinear ultrasonic measurements. Acta Mater. 58, 2143–2154 (2010)CrossRefGoogle Scholar
  138. 138.
    Campos-Pozuelo, C., Vanhille, C., Gallego-Juárez, J.A.: Comparative study of the nonlinear behavior of fatigued and intact samples of metallic alloys. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 53, 175–84 (2006)CrossRefGoogle Scholar
  139. 139.
    Shui, G., Wang, Y.-S., Gong, F.: Evaluation of plastic damage for metallic materials under tensile load using nonlinear longitudinal waves. NDT E Int. 55, 1–8 (2013)CrossRefGoogle Scholar
  140. 140.
    Kim, J.-Y., Qu, J., Jacobs, L.J., Littles, J.W., Savage, M.F.: Acoustic Nonlinearity Parameter Due to Microplasticity. J. Nondestruct. Eval. 25, 28–36 (2006)CrossRefGoogle Scholar
  141. 141.
    Rao, V.V.S.J., Kannan, E., Prakash, R.V., Balasubramaniam, K.: Observation of two stage dislocation dynamics from nonlinear ultrasonic response during the plastic deformation of AA7175-T7351 aluminum alloy. Mater. Sci. Eng. A. 512, 92–99 (2009)CrossRefGoogle Scholar
  142. 142.
    Cantrell, J.H., Yost, W.T.: Effect of precipitate coherency strains on acoustic harmonic generation. J. Appl. Phys. 81, 2957–2962 (1997)CrossRefGoogle Scholar
  143. 143.
    Mukhopadhyay, A., Sarkar, R., Punnose, S., Valluri, J., Nandy, T.K., Balasubramaniam, K.: Scatter in nonlinear ultrasonic measurements due to crystallographic orientation change induced anisotropy in harmonics generation. J. Appl. Phys. 111, 054905 (2012)CrossRefGoogle Scholar
  144. 144.
    Xiang, Y., Deng, M., Xuan, F.-Z., Liu, C.-J.: Experimental study of thermal degradation in ferritic Cr-Ni alloy steel plates using nonlinear Lamb waves. NDT&E Int. 44, 768–774 (2011)CrossRefGoogle Scholar
  145. 145.
    Metya, A., Ghosh, M., Parida, N., Palit Sagar, S.: Higher harmonic analysis of ultrasonic signal for ageing behaviour study of C-250 grade maraging steel. NDT E Int. 41, 484–489 (2008)CrossRefGoogle Scholar
  146. 146.
    Jeong, H., Nahm, S.-H., Jhang, K.-Y., Nam, Y.-H.: A nondestructive method for estimation of the fracture toughness of CrMoV rotor steels based on ultrasonic nonlinearity. Ultrasonics 41, 543–549 (2003)CrossRefGoogle Scholar
  147. 147.
    Park, J., Kim, M., Chi, B., Jang, C.: Correlation of metallurgical analysis and higher harmonic ultrasound response for long term isothermally aged and crept FM steel for USC TPP turbine rotors. NDT E Int. 54, 159–165 (2013)CrossRefGoogle Scholar
  148. 148.
    Abraham, S.T., Albert, S.K., Das, C.R., Parvathavarthini, N., Venkatraman, B., Mini, R.S., Balasubramaniam, K.: Assessment of sensitization in AISI 304 stainless steel by nonlinear ultrasonic method. Acta Metall. Sin. 26, 545–552 (2013)CrossRefGoogle Scholar
  149. 149.
    Xiang, Y., Deng, M., Xuan, F.-Z., Liu, C.-J.: Cumulative second-harmonic analysis of ultrasonic Lamb waves for ageing behavior study of modified-HP austenite steel. Ultrasonics 51, 974–981 (2011)CrossRefGoogle Scholar
  150. 150.
    Balasubramaniam, K., Valluri, J.S., Prakash, R.V.: Creep damage characterization using a low amplitude nonlinear ultrasonic technique. Mater. Charact. 62, 275–286 (2011)CrossRefGoogle Scholar
  151. 151.
    Valluri, J.S., Balasubramaniam, K., Prakash, R.V.: Creep damage characterization using non-linear ultrasonic techniques. Acta Mater. 58, 2079–2090 (2010)CrossRefGoogle Scholar
  152. 152.
    Narayana, V.J.S., Balasubramaniam, K., Prakash, R.V., Thompson, D.O., Chimenti, D.E.: Detection and prediction of creep-damage of copper using nonlinear acoustic techniques. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, pp. 1410–1417. American Institute of Physics, San Diego (2010)Google Scholar
  153. 153.
    Kim, C.S., Lissenden, C.J.: Precipitate contribution to the acoustic nonlinearity in nickel-based superalloy. Chin. Phys. Lett. 26, 086107 (2009)CrossRefGoogle Scholar
  154. 154.
    Matlack, K.H., Wall, J.J., Kim, J.-Y., Qu, J., Jacobs, L.J.: Nonlinear ultrasound to monitor radiation damage in structural steel. 6th European Workshop on Structural Health Monitoring. pp. 1–8 (2012)Google Scholar
  155. 155.
    Odette, G.R., Lucas, G.E.: Embrittlement of nuclear reactor pressure vessels. JOM 53, 18–22 (2001)Google Scholar
  156. 156.
    Zeitvogel, D.T., Matlack, K.H., Kim, J.-Y., Jacobs, L.J., Singh, P.M., Qu, J.: Characterization of stress corrosion cracking in carbon steel using nonlinear Rayleigh surface waves. NDT E Int. 62, 144–152 (2014)CrossRefGoogle Scholar
  157. 157.
    Biwa, S., Nakajima, S., Ohno, N.: On the acoustic nonlinearity of solid-solid contact with pressure-dependent interface stiffness. J. Appl. Mech. 71, 508–515 (2004)zbMATHCrossRefGoogle Scholar
  158. 158.
    Hirsekorn, S.: Nonlinear transfer of ultrasound by adhesive joints—a theoretical description. Ultrasonics 39, 57–68 (2001)CrossRefGoogle Scholar
  159. 159.
    Wegner, A., Koka, A., Janser, K., Netzelmann, U., Hirsekorn, S., Arnold, W.: Assessment of the adhesion quality of fusion-welded silicon wafers with nonlinear ultrasound. Ultrasonics 38, 316–321 (2000)CrossRefGoogle Scholar
  160. 160.
    Solodov, I.Y.: Ultrasonics of non-linear contacts: propagation, reflection and NDE-applications. Ultrasonics 36, 383–390 (1998)CrossRefGoogle Scholar
  161. 161.
    Van Den Abeele, K., Desadeleer, W., De Schutter, G., Wevers, M.: Active and passive monitoring of the early hydration process in concrete using linear and nonlinear acoustics. Cem. Concr. Res. 39, 426–432 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • K. H. Matlack
    • 1
  • J.-Y. Kim
    • 2
  • L. J. Jacobs
    • 2
  • J. Qu
    • 3
  1. 1.Department of Mechanical and Process EngineeringSwiss Federal Institute of Technology (ETH Zurich)ZurichSwitzerland
  2. 2.School of Civil and Environmental EngineeringGeorgia Institute of TechnologyAtlantaUSA
  3. 3.Department of Civil and Environmental EngineeringNorthwestern UniversityEvanstonUSA

Personalised recommendations