Skip to main content
Log in

Measurement of Acoustoelastic Effect of Rayleigh Wave in Plastically Deformed Silicon Steel Using Lensless Line-Focus Acoustic Microscopy

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

In this paper, a lensless line-focus poly(vinylidene fluoride trifluoroethylene) [P(VDF-TrFE)] ultrasound transducer and its \(V(f, z)\) defocusing measurement system have been applied to measure the acoustoelastic effect of Rayleigh wave propagating inside a plastically deformed silicon steel. The silicon steel sheets are subjected to uni-axial tensile loading so that different levels of permanent deformation ranging from 5 to 30 % are created. Since the ultrasound transducer is line-focused, Rayleigh wave velocities on each of the plastically deformed silicon steel samples can be measured along various directions relative to the loading direction. Finally, the correlation between Rayleigh wave velocity and plastic deformation is experimentally established in a direct, easy, and accurate way. The experimental results can then be used for the purpose of non-destructive evaluation of silicon steels which are widely used in industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ruud, C.O.: A review of selected non-destructive methods for residual stress measurement. NDT Int. 15(1), 15–23 (1982)

    Article  Google Scholar 

  2. Crecraft, D.I.: Ultrasonic wave velocities in stressed Nickel steel. Nature 195, 1193–1194 (1962)

    Article  Google Scholar 

  3. King, R.B., Fortunko, C.M.: Determination of in-plane residual stress states in plates using horizontally polarized shear waves. J. Appl. Phys. 54, 3027–3035 (1983)

    Article  Google Scholar 

  4. Leon-Salamanca, T., Bray, D.E.: Residual stress measurement in steel plates and welds using critically refracted longitudinal (L\(_{CR})\) waves. Res. Nondestr. Eval. 7(4), 169–184 (1996)

    Article  Google Scholar 

  5. Kudryavtsev Y, Lleiman J, Gushcha O (2000) Ultrasonic measurement of residual stresses in welded railway bridge. Structural materials technology: an NDT conference, 213–218.

  6. Eldevik S, Olsen Åge AF, Lunde P (2012) Sound velocity change owing to the acousto-elastic/plastic effect in steel measured using Acoustic Resonance Technology (ART). Scandinavian Symposium on Physical Acoustics

  7. Javadi, Y., Akhlaghi, M., Najafabadi, M.A.: Using finite element and ultrasonic method to evaluate welding longitudinal stress through the thickness in austenitic stainless steel plates. Mater. Des. 45, 628–642 (2013)

    Article  Google Scholar 

  8. Devos, D., Duquennoy, M., Roméro, E., et al.: Ultrasonic evaluation of residual stresses in flat glass tempering by an original double interferometric detection. Ultrasonics 44, e923–e927 (2006)

    Article  Google Scholar 

  9. Duguennoy, M., Ouaftouh, M., Deboucq, J., et al.: Influence of a superficial field of residual stress on the propagation of surface waves: Applied to the estimation of the depth of the superficial stressed zone. Appl. Phys. Lett. 101, 234104 (2012)

    Article  Google Scholar 

  10. Dong, L.M., Li, J., Ni, C.Y., et al.: Evaluation of residual stresses using laser-generated SAWs on surface of laser-welding plates. Int. J. Thermophys. 34, 1066–1079 (2013)

    Article  Google Scholar 

  11. Herrmann, J., Kim, J.Y., Jacobs, L., et al.: Assessment of material damage in a nickel-base superalloy using nonlinear Rayleigh surface waves. J. Appl. Phys. 99, 124913 (2006)

    Article  Google Scholar 

  12. Shui, G., Kim, J.Y., Qu, J., et al.: A new technique for measuring the acoustic nonlinearity of materials using Rayleigh waves. NDT&E Int. 41, 326–329 (2008)

    Article  Google Scholar 

  13. Liu, M., Kim, J.Y., Jacobs, L., et al.: Experimental study of nonlinear Rayleigh wave propagation in shot-peened aluminum plates-feasibility of measuring residual stress. NDT&E Int. 44, 67–74 (2011)

    Article  Google Scholar 

  14. Zhang, J.F., Xuan, F.Z., Xiang, Y.X., et al.: Non-linear ultrasonic response of plastically deformed aluminum alloy AA 7009. Mater. Sci. Technol. 29(11), 1304–1309 (2013)

    Article  Google Scholar 

  15. Tang, G., Liu, M., Jacobs, L., et al.: Detecting localized plastic strain by a scanning collinear wave mixing method. J. Nondestruct. Eval. (2014). doi:10.1007/s10921-014-0224-1

  16. Lissenden, C.J., Liu, Y., Choi, G.W., et al.: Effect of localized microstructure evolution on higher harmonic generation of guided waves. J. Nondestruct. Eval. (2014). doi:10.1007/s10921-014-0226-z

  17. Sklar, Z., Mutti, P., Stoodley, N.C., Briggs, G.A.D.: Measuring the elastic properties of stressed materials by quantitative acoustic microscopy. In: Briggs, G.A.D. (ed.) Advances in Acoustic Microscopy, vol. 1, pp. 209–247. Plenum press, New York (1995)

    Chapter  Google Scholar 

  18. Wang, L.: Determination of elastic constants of composites by time-resolved acoustic microscopy. Ultrasonics 37, 283–289 (1999)

    Article  Google Scholar 

  19. Kim, J.Y., Rokhlin, S.I.: Determination of elastic constants of generally anisotropic inclined lamellar structure using line-focus acoustic microscopy. J. Acoust. Soc. Am. 126(6), 2998–3007 (2009)

    Article  Google Scholar 

  20. Meeks, S.R., Peter, D., Horne, D., Young, K., Novotny, V.: Microscopic imaging of residual stress using a scanning phase-measuring acoustic microscope. Appl. Phys. Lett. 55(18), 1835–1837 (1989)

    Article  Google Scholar 

  21. Lee, Y.C., Kim, J.O., Achenbach, J.D.: Measurement of stresses by line-focus acoustic microscopy. Ultrasonics 32(5), 359–365 (1994)

    Article  Google Scholar 

  22. Okade, M., Kawashima, K.: Local stress measurement on polycrystalline aluminum by an acoustic microscope. Ultrasonics 36, 933–939 (1998)

    Article  Google Scholar 

  23. Sathish, S., Martin, R.W., Moran, T.J.: Local surface skimming longitudinal wave velocity and residual stress mapping. J. Acoust. Soc. Am. 115(1), 165–171 (2004)

    Article  Google Scholar 

  24. Yang CH, Characterization of piezoelectrics using line-focus transducer. Proceedings of 15th Conference of Chinese Society of Mechanical Engineering, pp 785–790 (1998)

  25. ASTM standard E8/E8M (2009) Standard test methods for tension testing of metallic materials. ASTM Int. West Conshohocken, PA, doi:10.1520/E0008-E0008M-09

  26. Chung, C.H., Lee, Y.C.: Fabrication of poly(vinylidene fluotride-trifluoroethylene) ultrasound focusing transducers and measurements of elastic constants of thin plates. NDTE Int. 43, 96–105 (2010)

  27. Kushibiki, J., Chubachi, N.: Material characterization by line-focus-beam acoustic microscope. IEEE Trans. Sonics. Ultrason. 32, 189–212 (1985)

    Article  Google Scholar 

  28. Lee, Y.C., Achenbach, J.D., Kim, J.O.: Acoustic microscopy measurements to correlate surface wave velocity and surface roughness. Review of progress in quantitative nondestructive evaluation, pp. 1791–1797. Springer, New York (1993)

    Chapter  Google Scholar 

  29. Warren, P.D., Pecorari, C., Kolosov, O.V., Roberts, S.G., Briggs, G.A.D.: Characterization of surface damage via surface acoustic waves. Nanotechnology 7, 295–301 (1996)

    Article  Google Scholar 

  30. Pape, I., Lawrence, C.W., Warren, P.D., Roberts, S.G., Briggs, G.A.D., Kolosov, O.V., Hey, A.W., Paines, C.F., Tanner, B.K.: Evaluation of polishing damage in alumina. Philos. Mag. A. 80(8), 1913–1934 (2000)

    Article  Google Scholar 

  31. Gerhart, G.R.: Rayleigh wave velocity for a stress-induced slightly anisotropic solid. J. Acoust. Soc. Am. 60(5), 1085–1088 (1976)

    Article  Google Scholar 

Download references

Acknowledgments

Our special thanks are extended to the Metal Industries Research and Development Centre, Kaohsiung, Taiwan, Republic of China, for the financial support and provide for the permanent-deformed silicon steel sheets.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. -I. Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, C.I., Lee, Y.C. Measurement of Acoustoelastic Effect of Rayleigh Wave in Plastically Deformed Silicon Steel Using Lensless Line-Focus Acoustic Microscopy. J Nondestruct Eval 33, 670–675 (2014). https://doi.org/10.1007/s10921-014-0261-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10921-014-0261-9

Keywords

Navigation