Skip to main content
Log in

Influence of Grain Size on the Propagation of L\(_\mathrm{CR}\) Waves in Low Carbon Steel

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

The acoustoelastic theory states that mechanical stress relates to the wave speed. The microstructure of the materials influences the propagation of any ultrasonic wave, which is a major drawback in employing critically refracted longitudinal waves (L\(_\mathrm{CR}\)) in field measurements. The present study investigates the effect of mean austenitic grain size (MAGS) on propagation speed of L\(_\mathrm{CR}\) waves in ASTM A36 low carbon hot-rolled steel plates subjected to different heat treatment temperatures. The samples were heated at 900, 1000, 1050, 1100, 1200 \(^{\circ }\)C for 30 min to obtain different grain sizes. They were measured as received and after the heat treatment, employing the ultrasonic method. The MAGS were compared to the grain size obtained from optical microscopy. The results confirmed the influence of the MAGS on the L\(_\mathrm{CR}\) speed, which can be represented by a second order polynomial curve. From the experimental results, we show that it is necessary to correct the effect of the MAGS on the L\(_\mathrm{CR}\) speed; otherwise we cannot measure the stresses without previous calibration using a stress reference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Palanichamy, P., Joseph, A., Jayakumar, T., Raj, B.: Ultrasonic velocity measurements for estimation of grain size in austenitic stainless steel. NDT & E Int. 28(3), 179–185 (1995)

    Article  Google Scholar 

  2. Ahn, B., Lee, S.S., Hong, S.T., Kim, H.C., Kang, S.-J.L.: Application of the acoustic resonance method to evaluate the grain size of low carbon steels. NDT & E Int. 32, 85–89 (1999)

    Article  Google Scholar 

  3. Ahn, B., Lee, S.S.: Effect of microstructure of low carbon steels on ultrasonic attenuation. IEEE Trans. Ultrson. Ferroelectr. Freq. Control 47(3), 620–629 (2000)

    Article  Google Scholar 

  4. Bouda, A.B., Lebaili, S., Benchaala, A.: Grain size influence on ultrasonic velocities and attenuation. NDT & E Int. 36, 1–5 (2003)

    Article  Google Scholar 

  5. Sarpün, I.H., Kiliçkaya, M.S., Tuncel, S.: Mean grain size determination in marbles by ultrasonic velocity techniques. NDT & E Int. 38(1), 21–25 (2005)

    Article  Google Scholar 

  6. Ünal, R., Sarpün, I.H., Yalim, H.A., Erol, A., Özdemir, T., Tuncel, S.: The mean grain size determination of Boron carbide (B4C)–Aluminium (Al) and Boron carbide (B4C)–Nickel (Ni) composites by ultrasonic velocity technique. Mater. Character. 56(3), 241–244 (2006)

    Article  Google Scholar 

  7. Sarpün, I.H.; Özkan, V.; Tuncel, S.; Ünal, R.: Determination of mean grain size by ultrasonic methods of tungsten carbide metal matrix composites sintered at various temperatures. 4th Int Conf on NDT, Chania, Crete-Greece, pp. 1–5 (2007)

  8. Mutlu, I., Oktay, E., Ekinci, S.: Effect of grain size on the ultrasonic parameters in stainless steels. Int. J. Microstruct. Mater. Prop. 4(4), 423–435 (2009)

    Google Scholar 

  9. Aghaie-Khafri, M., Honarvar, F., Zanganeh, S.: Characterization of grain size and yield strength in AISI 301 stainless steel using ultrasonic attenuation measurements. J. Nondestruct. Eval. 31, 191–196 (2012)

    Article  Google Scholar 

  10. Özkan, V., Sarpün, I.H.: Examining with the sintered temperature of mean grain size of B4C–Al–Ni composites by ultrasonic techniques. Proc. Int. Conf. Adv. Appl. Phys. Mater. Sci. 121, 184–186 (2012)

    Google Scholar 

  11. Buenos, A.A.: Effect of Mean grain size in the time of flight for L\(_{\text{ CR }}\) Waves. Proc ASME 2012 Int Mech Eng Cong and Exp IMECE 2012, pp. 1–7 (2012)

  12. Bray, D.E., Tang, W.: Subsurface stress evaluation in steel plates and bars using the L\(_{\text{ CR }}\) ultrasonic wave. Nucl. Eng. Des. 207, 231–240 (2001)

    Article  Google Scholar 

  13. Qozan, H., Chaki, S., Bourse, G., Robin, C., Walaszek, H., Bouteille, P.: Microstructure effect on the Lcr elastic wave for welding residual stress measurement. Exp. Mech. 50, 179–185 (2010)

    Article  Google Scholar 

  14. Javadi, Y., Afzali, O., Raeisi, M.H., Najafabadi, M.A.: Nondestructive evaluation of welding residual stresses in dissimilar welded pipes. J. Nondestruct. Eval. 32, 177–187 (2013)

    Article  Google Scholar 

  15. Hughes, D.S., Kelly, J.L.: Second-order elastic deformation of solids. Phys. Rev. 92(4), 1145–1149 (1953)

    Article  MATH  Google Scholar 

  16. Bray, D.E., Stanley, R.K.: Nondestructive evaluation: A Tool in Design, Manufacturing, and Service, Rev edn. CRC Press, Boca Raton (1997)

    Google Scholar 

  17. Rose, J.L.: Ultrasonic Waves in Solid Media. Cambridge University Press, New York (1999)

    Google Scholar 

  18. Buenos, A.A., Santos Jr, A.A., Rodrigues, A.R., Tokimatsu, R.C.: Application of acoustoelasticity to measure the stress generated by milling in ASTM A36 steel plates. J. Braz. Soc. Mech. Sci. Eng. 35(4), 525–536 (2013)

    Article  Google Scholar 

  19. Fraga, R.S.; Santos, A.A.; Andrino, M.H.: Temperature effect on the measurement of stresses in pipelines using ultrasonic Lcr waves. Proc ASME 2008 Int Mech Eng Cong and Exp IMECE, pp. 361–367 (2008)

  20. Santos, A.A., Bray, D.E.: Comparison of acoustoelastic methods to evaluate stresses in steel plates and bars. J. Press. Vessel Technol. 124(3), 354–358 (2002)

    Article  Google Scholar 

  21. Silva, A.L.V.C., Mei, P.R.: Aços e Ligas Especiais, pp. 83–146. Edgard Blücher, São Paulo (2010)

    Google Scholar 

  22. American Society for Testing and Materials: Standard test methods for determining average grain Size. ASTM International pp. E112–12 (2012)

Download references

Acknowledgments

The authors are grateful to the School Mechanical Engineering (FEM) of the University of Campinas (UNICAMP). The authors also thank the National Council for Scientific and Technological Development (CNPq) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Auteliano Antunes dos Santos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buenos, A.A., Pereira, P., Mei, P.R. et al. Influence of Grain Size on the Propagation of L\(_\mathrm{CR}\) Waves in Low Carbon Steel. J Nondestruct Eval 33, 562–570 (2014). https://doi.org/10.1007/s10921-014-0252-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10921-014-0252-x

Keywords

Navigation