Journal of Nondestructive Evaluation

, Volume 33, Issue 2, pp 226–238 | Cite as

Optimized Dynamic Acousto-elasticity Applied to Fatigue Damage and Stress Corrosion Cracking

  • Sylvain Haupert
  • Jacques Rivière
  • Brian Anderson
  • Yoshikazu Ohara
  • T. J. Ulrich
  • Paul Johnson
Article

Abstract

The dynamic acousto-elasticity (DAE) technique uniquely provides the elastic (speed of sound and attenuation) behavior over a dynamic strain cycle. This technique has been applied successfully to highly nonlinear materials such as rock samples, where nonlinear elastic sources are present throughout the material. DAE has shown different nonlinear elastic behavior in tension and compression as well as early-time memory effects (i.e. fast and slow dynamics) that cannot be observed with conventional dynamic techniques (e.g. resonance or wave mixing measurements). The main objective of the present study is to evaluate if the DAE technique is also sensitive to (1) fatigue damage and (2) a localized stress corrosion crack. A secondary objective is to adapt the DAE experimental setup to perform measurements in smaller specimens (thickness of few cm). Several samples (intact aluminium, fatigued aluminium and steel with a stress corrosion crack) were investigated. Using signal processing not normally applied to DAE, we are able to measure the nonlinear elastic response of intact aluminium, distinguish the intact from the fatigued aluminium sample and localize different nonlinear features in the stress corrosion cracked steel sample.

Keywords

Nonlinear acoustics Dynamic acousto-elasticity Micro-damage Stress corrosion crack Fatigue damage Polycrystalline metals 

References

  1. 1.
    Zheng, Y.P., Maev, R.G., Solodov, I.Y.: Nonlinear acoustic applications for material characterization: a review. Can. J. Phys. 77, 927–967 (1999)CrossRefGoogle Scholar
  2. 2.
    Ostrovsky, L.A., Johnson, P.A.: Dynamic nonlinear elasticity in geomaterials. Riv. Del Nuovo Cimento. 24, 1–46 (2001)Google Scholar
  3. 3.
    Jhang, K.Y.: Nonlinear ultrasonic techniques for nondestructive assessment of micro damage in material: a review. Int. J. Precis. Eng. Manuf. 10, 123–135 (2009)CrossRefGoogle Scholar
  4. 4.
    Rudenko, O.V.: Giant nonlinearities in structurally inhomogeneous media and the fundamentals of nonlinear acoustic diagnostic techniques. Phys.-Usp. 49, 69 (2006)CrossRefGoogle Scholar
  5. 5.
    Guyer, R.A., Johnson, P.A.: Nonlinear Mesoscopic Elasticity: The Complex Behaviour of Rocks, Soil, Concrete. Wiley, New York (2009)CrossRefGoogle Scholar
  6. 6.
    Van den Abeele, K., Johnson, P.A., Sutin, A.: Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material damage, part I: nonlinear wave modulation spectroscopy (NWMS). Res. Nondestruct. Eval. 12, 17–30 (2000)CrossRefGoogle Scholar
  7. 7.
    Landau, L., Lifshitz, E.: Theory of Elasticity. Pergammon, Oxford (1986)Google Scholar
  8. 8.
    Buck, O., Morris, W.L.: Acoustic harmonic-generation at unbonded interfaces and fatigue cracks. J. Acoust. Soc. Am. 64, S33–S33 (1978)CrossRefGoogle Scholar
  9. 9.
    Buck, O., Morris, W.L., Inman, R.V.: Acoustic harmonic-generation due to fatigue damage in high-strength aluminum. J. Metals 31, F5 (1979)Google Scholar
  10. 10.
    Cantrell, J., Yost, W.: Nonlinear ultrasonic characterization of fatigue microstructures. Int. J. Fatigue 23, 487–490 (2001)CrossRefGoogle Scholar
  11. 11.
    Frouin, J., Sathish, S., Matikas, T.E., Na, J.K.: Ultrasonic linear and nonlinear behavior of fatigued Ti–6Al–4V. J. Mater. Res. 14, 1295–1298 (1999)CrossRefGoogle Scholar
  12. 12.
    Kim, J.Y., Jacobs, L.J., Qu, J., Littles, J.W.: Experimental characterization of fatigue damage in a nickel-base superalloy using nonlinear ultrasonic waves. J. Acoust. Soc. Am. 120, 1266 (2006)CrossRefGoogle Scholar
  13. 13.
    Solodov, I., Wackerl, J., Pfleiderer, K., Busse, G.: Nonlinear self-modulation and subharmonic acoustic spectroscopy for damage detection and location. Appl. Phys. Lett. 84, 5386 (2004)CrossRefGoogle Scholar
  14. 14.
    Ohara, Y., Mihara, T., Sasaki, R., Ogata, T., Yamamoto, S., Kishimoto, Y., Yamanaka, K.: Imaging of closed cracks using nonlinear response of elastic waves at subharmonic frequency. Appl. Phys. Lett. 90, 011902 (2007)CrossRefGoogle Scholar
  15. 15.
    Donskoy, D., Sutin, A., Ekimov, A.: Nonlinear acoustic interaction on contact interfaces and its use for nondestructive testing. NDT & E Int. 34, 231–238 (2001)CrossRefGoogle Scholar
  16. 16.
    Van den Abeele, K., Carmeliet, J., Ten Cate, J.A., Johnson, P.A.: Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material damage, part II: single-mode nonlinear resonance acoustic spectroscopy. Res. Nondestruct. Eval. 12, 31–42 (2000)CrossRefGoogle Scholar
  17. 17.
    Nazarov, V.E., Ostrovsky, L.A., Soustova, I.A., Sutin, A.M.: Nonlinear acoustics of micro-inhomogeneous media. Phys. Earth. Planet. Inter. 50, 65–73 (1988)CrossRefGoogle Scholar
  18. 18.
    Guyer, R.A., Johnson, P.A.: Nonlinear mesoscopic elasticity: evidence for a new class of materials. Phys. Today 52, 30–36 (1999)CrossRefGoogle Scholar
  19. 19.
    Johnson, P.A.: The new wave in acoustic testing. Mater. World 7, 544–546 (1999)Google Scholar
  20. 20.
    Van den Abeele, K., De Visscher, J.: Damage assessment in reinforced concrete using spectral and temporal nonlinear vibration techniques. Cem. Conc. Res. 30, 1453–1464 (2000)CrossRefGoogle Scholar
  21. 21.
    Bentahar, M., El Aqra, H., El Guerjouma, R., Griffa, M., Scalerandi, M.: Hysteretic elasticity in damaged concrete: quantitative analysis of slow and fast dynamics. Phys. Rev. B 73(1), 014116 (2006)CrossRefGoogle Scholar
  22. 22.
    Zardan, J.P., Payan, C., Garnier, V., Salin, J.: Effect of the presence and size of a localized nonlinear source in concrete. J. Acoust. Soc. Am. 128(1), EL38–42 (2010)CrossRefGoogle Scholar
  23. 23.
    Payan, C., Garnier, V., Moysan, J., Johnson, P.A.: Applying nonlinear resonant ultrasound spectroscopy to improving thermal damage assessment in concrete. J. Acoust. Soc. Am. 121, EL125–130 (2007)CrossRefGoogle Scholar
  24. 24.
    Bouchaala, F., Payan, C., Garnier, V., Balayssac, J.P.: Carbonation assessment in concrete by nonlinear ultrasound. Cem. Concr. Res. 41, 557–559 (2011)CrossRefGoogle Scholar
  25. 25.
    Antonaci, P., Bruno, C., Bocca, P., Scalerandi, M., Gliozzi, A.: Nonlinear ultrasonic evaluation of load effects on discontinuities in concrete. Cem. Concr. Res. 40, 340–346 (2010)CrossRefGoogle Scholar
  26. 26.
    Zagrai, A., Donskoy, D., Chudnovsky, A., Golovin, E.: Micro-and macroscale damage detection using the nonlinear acoustic vibro-modulation technique. Res. Nondestruct. Eval. 19, 104–128 (2008)Google Scholar
  27. 27.
    Courtney, C., Drinkwater, B., Neild, S., Wilcox, P.: Factors affecting the ultrasonic intermodulation crack detection technique using bispectral analysis. NDT & E Int. 41, 223–234 (2008)CrossRefGoogle Scholar
  28. 28.
    Van den Abeele, K., Van de Velde, K., Carmeliet, J.: Inferring the degradation of pultruded composites from dynamic nonlinear resonance measurements. Polym. Compos. 22, 555–567 (2001)CrossRefGoogle Scholar
  29. 29.
    Bentahar, M., El Guerjouma, R.: Monitoring progressive damage in polymer-based composite using nonlinear dynamics and acoustic emission. J. Acoust. Soc. Am. 125, EL39 (2009)CrossRefGoogle Scholar
  30. 30.
    Van den Abeele, K., Le Bas, P., Van Damme, B., Katkowski, T.: Quantification of material nonlinearity in relation to microdamage density using nonlinear reverberation spectroscopy: Experimental and theoretical study. J. Acoust. Soc. Am. 126, 963 (2009)CrossRefGoogle Scholar
  31. 31.
    Van Damme, B., Van Den Abeele, K., Bou Matar, O.: The vibration dipole: a time reversed acoustics scheme for the experimental localisation of surface breaking cracks. Appl. Phys. Lett. 100, 084103 (2012)CrossRefGoogle Scholar
  32. 32.
    Muller, M., Mitton, D., Talmant, M., Johnson, P., Laugier, P.: Nonlinear ultrasound can detect accumulated damage in human bone. J. Biomech. 41, 1062–1068 (2008)CrossRefGoogle Scholar
  33. 33.
    Rivière, J., Haupert, S., Laugier, P., Ulrich, T., Le Bas, P.Y., Johnson, P.A.: Time reversed elastic nonlinearity diagnostic applied to mock osseointegration monitoring applying two experimental models. J. Acoust. Soc. Am. 131, 1922–1927 (2012)CrossRefGoogle Scholar
  34. 34.
    Nazarov, V.E.: Nonlinear damping of sound by sound in metals. Sov. Phys. Acoust.-Ussr. 37, 616–619 (1991)Google Scholar
  35. 35.
    Nazarov, V.E., Kolpakov, A.B., Radostin, A.V.: Amplitude dependent internal friction and generation of harmonics in granite resonator. Acoust. Phys. 55, 100–107 (2009)CrossRefGoogle Scholar
  36. 36.
    Zaitsev, V., Gusev, V., Castagnede, B.: Luxemburg-Gorky effect retooled for elastic waves: a mechanism and experimental evidence. Phys. Rev. Lett. 89, 105502 (2002)CrossRefGoogle Scholar
  37. 37.
    Westervelt, P.J.: Scattering of sound by sound. J. Acoust. Soc. Am. 29, 199–203 (1957)CrossRefMathSciNetGoogle Scholar
  38. 38.
    Renaud, G., Talmant, M., Callé, S., Defontaine, M., Laugier, P.: Nonlinear elastodynamics in micro-inhomogeneous solids observed by head wave based dynamic acoustoelastic testing. J. Acoust. Soc. Am. 130(6), 3583–3589 (2011)Google Scholar
  39. 39.
    Renaud, G., Riviere, J., Haupert, S., Laugier, P.: Anisotropy of dynamic acoustoelasticity in limestone, influence of conditioning, and comparison with nonlinear resonance spectroscopy. J. Acoust. Soc. Am. 133, 3706–3718 (2013)CrossRefGoogle Scholar
  40. 40.
    Rivière, J., Renaud, G., Guyer, R.A., Johnson, P.A.: Pump and probe waves in dynamic acousto-elasticity: comprehensive description and comparison with nonlinear elastic theories. J. Appl. Phys. 114, 054905 (2013)CrossRefGoogle Scholar
  41. 41.
    Renaud, G., Callé, S., Defontaine, M.: Remote dynamic acoustoelastic testing: elastic and dissipative acoustic nonlinearities measured under hydrostatic tension and compression. Appl. Phys. Lett. 94, 011905 (2009)CrossRefGoogle Scholar
  42. 42.
    Hamilton, M.F., Blackstock, D.T.: Nonlinear acoustics. Academic Press, San Diego (1998)Google Scholar
  43. 43.
    Winkler, K.W., Liu, X.: Measurements of third-order elastic constants in rocks. J. Acoust. Soc. Am. 100, 1392 (1996)CrossRefGoogle Scholar
  44. 44.
    Renaud, G., Calle, S., Remenieras, J.P., Defontaine, M.: Non-linear acoustic measurements to assess crack density in trabecular bone. Int. J. Non-Linear Mech. 43, 194–200 (2008)CrossRefGoogle Scholar
  45. 45.
    Moreschi, H., Calle, S., Guerard, S., Mitton, D., Renaud, G., Defontaine, M.: Monitoring of trabecular bone induced microdamage using a nonlinear wave-coupling technique. In: Ultrasonic Symposium(IUS), IEEE International, IEEE, 550–553 (2009)Google Scholar
  46. 46.
    Renaud, G., Calle, S., Remenieras, J.P., Defontaine, M.: Exploration of trabecular bone nonlinear elasticity using time-of-flight modulation. IEEE Trans. Ultrason. Ferroelectri. Freq. Control. 55, 1497–1507 (2008)CrossRefGoogle Scholar
  47. 47.
    Moreschi, H., Callé, S., Guerard, S., Mitton, D., Renaud, G., Defontaine, M.: Monitoring trabecular bone microdamage using a dynamic acousto-elastic testing method. Proc. Insti. Mech. Eng. H 225, 1–12 (2011)Google Scholar
  48. 48.
    Renaud, G., Le Bas, P.-Y., Johnson, P.A.: Revealing highly complex elastic nonlinear (anelastic) behavior of Earth materials applying a new probe: dynamic acoustoelastic testing. J. Geophys. Res. 117(B6), 1–17 (2012)Google Scholar
  49. 49.
    Elements of Metallurgy and Engineering Alloys. ASM International, Materials Park (2008)Google Scholar
  50. 50.
    Ohara, Y., Endo, H., Mihara, T., Yamanaka, K.: Ultrasonic measurement of closed stress corrosion crack depth using subharmonic phased array. Jpn. J. Appl. Phys. 48, 07GD01 (2009)Google Scholar
  51. 51.
    Haupert, S., Renaud, G., Riviere, J., Talmant, M., Johnson, P.A., Laugier, P.: High-accuracy acoustic detection of nonclassical component of material nonlinearity. J. Acoust. Soc. Am. 130, 2654–2661 (2011)CrossRefGoogle Scholar
  52. 52.
    Tencate, J.A.: Slow dynamics of earth materials: an experimental overview. Pure and Appl. Geophys. 168(12), 2211–2219 (2011)CrossRefGoogle Scholar
  53. 53.
    TenCate, J.A., Smith, E., Guyer, R.A.: Universal slow dynamics in granular solids. Phys. Rev. Lett. 85, 1020–1023 (2000)CrossRefGoogle Scholar
  54. 54.
    Johnson, P., Sutin, A.: Slow dynamics and anomalous nonlinear fast dynamics in diverse solids. J. Acoust. Soc. Am. 117, 124–130 (2005)CrossRefGoogle Scholar
  55. 55.
    Cespedes, I., Huang, Y., Ophir, J., Spratt, S.: Methods for estimation of subsample time delays of digitized echo signals. Ultrason. Imaging 17, 142–171 (1995)CrossRefGoogle Scholar
  56. 56.
    Van den Abeele, K., Sutin, A., Carmeliet, J., Johnson, P.A.: Micro-damage diagnostics using nonlinear elastic wave spectroscopy (NEWS). NDT & E Int. 34, 239–248 (2001)CrossRefGoogle Scholar
  57. 57.
    Cantrell, J.H., Yost, W.T.: Acoustic harmonic generation from fatigue-induced dislocation dipoles. Philos. Mag. A 69, 315–326 (1994)CrossRefGoogle Scholar
  58. 58.
    Ulrich, T.J., Van Den Abeele, K., Le Bas, P.-Y., Griffa, M., Anderson, B.E., Guyer, R.A.: Three component time reversal: focusing vector components using a scalar source. J. Appl. Phys. 106, 113504 (2009)CrossRefGoogle Scholar
  59. 59.
    Sarma, V.P.N., Reddy, P.J.: Third-order elastic constants of aluminium. Physica Status Solidi (a). 10, 563–567 (1972)CrossRefGoogle Scholar
  60. 60.
    Hikata, A., Chick, B.B., Elbaum, C.: Dislocation contribution to the second harmonic generation of ultrasonic waves. J. Appl. Phys. 36, 229–236 (1965)CrossRefGoogle Scholar
  61. 61.
    VandenAbeele, K.E.A., Johnson, P.A., Guyer, R.A., McCall, K.R.: On the quasi-analytic treatment of hysteretic nonlinear response in elastic wave propagation. J. Acoust. Soc. Am. 101, 1885–1898 (1997) Google Scholar
  62. 62.
    Trarieux, C., Callé, S., Poulin, A., Tranchant, J.-F., Moreschi, H., Defontaine, M.: Measurement of nonlinear viscoelastic properties of fluids using dynamic acoustoelastic testing. In: IOP Conference Series: Mater. Sci. Eng. 42, 012026. (2012)Google Scholar
  63. 63.
    Trarieux, C., Calle, S., Moreschi, H., Poulin, A., Tranchant, J.F., Defontaine, M.: An analytical model to describe nonlinear viscoelastic properties of fluids measured by dynamic acoustoelastic testing. In: Ultrasonic Symposium(IUS), IEEE, 1–4 (2012)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Sylvain Haupert
    • 1
  • Jacques Rivière
    • 2
  • Brian Anderson
    • 2
  • Yoshikazu Ohara
    • 3
  • T. J. Ulrich
    • 2
  • Paul Johnson
    • 2
  1. 1.Laboratoire d’imagerie paramétriqueCNRS UMR 7623, UPMC Paris 6ParisFrance
  2. 2.Geophysics Group MS D446, Earth and Environmental SciencesLos Alamos National LaboratoryLos AlamosUSA
  3. 3.Department of Materials Processing, Graduate School of EngineeringTohoku UniversitySendai Japan

Personalised recommendations