Skip to main content
Log in

Dynamic Acousto-Elasticity in a Fatigue-Cracked Sample

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Dynamic acousto-elasticity (DAE) provides a unique way to observe nonlinear elastic features over an entire dynamic stress cycle including hysteresis and memory effects, detailing the full nonlinear behavior under tension and compression. This supplemental information cannot be observed with conventional nonlinear ultrasonic methods such as wave frequency mixing or resonance measurements, since they measure average, bulk variations of modulus and attenuation versus strain level. Where prior studies have employed DAE in volumetrically nonlinear materials (e.g., rocks, bone with distributed micro-crack networks), here we report results of DAE on the application to a single localized nonlinear feature, a fatigue crack, to characterize the nonlinear elastic response in regions of the crack length, tip, and undamaged portions of an aluminum sample. Linear wave speed, linear attenuation and third order elastic moduli (i.e., nonlinear parameters) each indicate a sensitivity to the presence of the crack, though in unique manners. The localized nature of the DAE measurement and its potential for quantifying all of the third order elastic constants makes it a promising technique for both detecting cracks, as well as providing quantitative information on the effect of the cracks on the material integrity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hughes, D.S., Kelly, J.L.: Second-order elastic deformation of solids. Phys. Rev. 92, 1145–1149 (1953)

    Article  MATH  Google Scholar 

  2. Winkler, K.W., McGowan, L.: Nonlinear acoustoelastic constants of dry and saturated rocks. J. Geophys. Res. 109, B10204 (2004)

  3. Landau, L.D., Lifshitz, E.M.: Theory of Elasticity, 3rd edn. (Theoretical Physics, vol. 7). Butterworth-Heinemann, (1986)

  4. Renaud, G., Rivière, J., Haupert, S., Laugier, P.: Anisotropy of dynamic acoustoelasticity in limestone, influence of conditioning, and comparison with nonlinear resonance spectroscopy. J. Acoust. Soc. Am. 133, 3706–3718 (2013)

    Article  Google Scholar 

  5. Renaud, G., Le Bas, P.Y., Johnson, P.A.: Revealing highly complex elastic nonlinear (anelastic) behavior of earth materials applying a new probe: dynamic acoustoelastic testing. J. Geophys. Res. 117(B6), B06202 (2012)

    Google Scholar 

  6. Renaud, G., Rivière, J., Le Bas, P.Y., Johnson, P.A.: Hysteretic nonlinear elasticity of berea sandstone at low vibrational strain revealed by dynamic acousto-elastic testing. Geophys. Res. Lett. 40, 715–719 (2013)

    Article  Google Scholar 

  7. Guyer, R.A., Johnson, P.A.: Nonlinear Mesoscopic Elasticity: the Complex Behaviour of Rocks, Soil, Concrete. Wiley, New York (2009)

    Book  Google Scholar 

  8. TenCate, J.A.: Slow dynamics of earth materials: an experimental overview. Pure Appl. Geophys. 168(12), 2211–2219 (2011)

    Article  Google Scholar 

  9. Rivière, J., Renaud, G., Guyer, R.A., Johnson, P.A.: Pump and probe waves in dynamic acousto-elasticity: comprehensive description and comparison with nonlinear elastic theories. J. Appl. Phys. 114, 054905 (2013)

    Article  Google Scholar 

  10. Ingard, U., Pridmore-Brown, D.C.: Scattering of sound by sound. J. Acoust. Soc. Am. 28(3), 367–369 (1956)

    Article  Google Scholar 

  11. Westervelt, P.J.: Scattering of sound by sound. J. Acoust. Soc. Am. 29(8), 934–935 (1957)

    Article  MathSciNet  Google Scholar 

  12. Rollins Jr, F.R., Taylor, L.H., Todd Jr, P.H.: Ultrasonic study of three-phonon interactions. ii. Experimental results. Phys. Rev. 136(3A), A597 (1964)

    Article  Google Scholar 

  13. Taylor, L.H., Rollins Jr, F.R.: Ultrasonic study of three-phonon interactions. i. Theory. Phys. Rev. 136(3A), A591 (1964)

    Article  Google Scholar 

  14. Ohara, Y., Mihara, T., Yamanaka, K.: Effect of adhesion force between crack planes on subharmonic and dc responses in nonlinear ultrasound. Ultrasonics 44(2), 194–199 (2006)

    Article  Google Scholar 

  15. Ohara, Y., Mihara, T., Sasaki, R., Ogata, T., Yamamoto, S., Kishimoto, Y., Yamanaka, K.: Imaging of closed cracks using nonlinear response of elastic waves at subharmonic frequency. Appl. Phys. Lett. 90(1), 011902–011902 (2007)

    Article  Google Scholar 

  16. Ohara, Y., Endo, H., Hashimoto, M., Shintaku, Y., Yamanaka, K.: Monitoring growth of closed fatigue crack using subharmonic phased array. AIP Conf. Proc. 1211, 903 (2010)

    Article  Google Scholar 

  17. Ohara, Y., Endo, H., Mihara, T., Yamanaka, K.: Ultrasonic measurement of closed stress corrosion crack depth using subharmonic phased array. Jpn. J. Appl. Phys. 48(7), 07GD01-07GD01 (2009)

    Google Scholar 

  18. Renaud, G., Talmant, M., Callé, S., Defontaine, M., Laugier, P.: Nonlinear elastodynamics in micro-inhomogeneous solids observed by head-wave based dynamic acoustoelastic testing. J. Acoust. Soc. Am. 130(6), 3583–3589 (2011)

    Article  Google Scholar 

  19. Renaud, G., Callé, S., Defontaine, M.: Remote dynamic acoustoelastic testing: elastic and dissipative acoustic nonlinearities measured under hydrostatic tension and compression. Appl. Phys. Lett. 94, 011905 (2009)

    Article  Google Scholar 

  20. Renaud, G., Callé, S., Defontaine, M.: Dynamic acoustoelastic testing of weakly pre-loaded unconsolidated water-saturated glass beads. J. Acoust. Soc. Am. 128, 3344 (2010)

    Article  Google Scholar 

  21. Hamilton, M.F., Blackstock, D.T.: Nonlinear Acoustics. Academic Press, San Diego (1998)

    Google Scholar 

  22. Ulrich, T.J., Van Den Abeele, K., Le Bas, P.Y., Griffa, M., Anderson, B.E., Guyer, R.A.: Three component time reversal: focusing vector components using a scalar source. J. Appl. Phys. 106(11), 113504–113504 (2009)

    Article  Google Scholar 

  23. Sheriff, R.E.: Encyclopedic Dictionary of Exploration Geophysics. Society of Exploration Geophysicists, Tulsa, OK (1991)

  24. Tao, H., Zavattieri, P.D., Hector Jr, L.G., Tong, W.: Mode i fracture at spot welds in dual-phase steel: an application of reverse digital image correlation. Exp. Mech. 50(8), 1199–1212 (2010)

    Article  Google Scholar 

  25. Solodov, IYu., Krohn, N., Busse, G.: Can: an example of nonclassical acoustic nonlinearity in solids. Ultrasonics 40(1), 621–625 (2002)

    Article  Google Scholar 

  26. Delrue, S., Van Den Abeele, K.: Three-dimensional finite element simulation of closed delaminations in composite materials. Ultrasonics 52(2), 315–324 (2012)

    Google Scholar 

  27. Biwa, S., Suzuki, A., Ohno, N.: Evaluation of interface wave velocity, reflection coefficients and interfacial stiffnesses of contacting surfaces. Ultrasonics 43(6), 495–502 (2005)

    Article  Google Scholar 

  28. Nagy, P.B.: Ultrasonic classification of imperfect interfaces. J. Nondestr. Eval. 11(3–4), 127–139 (1992)

    Article  Google Scholar 

  29. Ulrich, T.J., Johnson, P.A., Guyer, R.A.: Interaction dynamics of elastic waves with a complex nonlinear scatterer through the use of a time reversal mirror. Phys. Rev. Lett. 98, 104301 (2007)

    Article  Google Scholar 

  30. Ulrich, T.J., Sutin, A.M., Guyer, R.A., Johnson, P.A.: Time reversal and non-linear elastic wave spectroscopy (tr news) techniques. Int. J. Nonlinear Mech. 43, 209–216 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by the U.S. Dept. of Energy, Office of Basic Energy Science (Engineering and Geoscience) and Office of Nuclear Energy (Fuel Cycle R&D, Used Fuel Disposition Campaign).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Rivière.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rivière, J., Remillieux, M.C., Ohara, Y. et al. Dynamic Acousto-Elasticity in a Fatigue-Cracked Sample. J Nondestruct Eval 33, 216–225 (2014). https://doi.org/10.1007/s10921-014-0225-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10921-014-0225-0

Keywords

Navigation