Journal of Nondestructive Evaluation

, Volume 33, Issue 3, pp 335–341 | Cite as

Infrared Lock-in Thermography Crack Localization on Metallic Surfaces for Industrial Diagnosis

  • Y. Fedala
  • M. Streza
  • F. Sepulveda
  • J.-P. Roger
  • G. Tessier
  • C. Boué
Article

Abstract

Optical lock-in thermography with a modulated laser excitation is used for the qualitative assessment of surface cracks in metallic samples. In order to identify and localize an open defect, a novel dedicated image processing of the recorded IR amplitude sequence is proposed. The obtained results demonstrate the potentiality of active lock-in thermography as a contactless measurement tool for the localization of breaking cracks located into specific regions difficult to reach by other conventional non-destructive testing (NDT) techniques such as eddy currents or ultrasound techniques. Crack localization without a prior preparation of the inspected surface can be a possible alternative to penetrant inspection in industrial processes. Various applications illustrating the proposed procedure are presented.

Keywords

Infrared thermography Lock-in thermography Non-destructive testing Crack localization 

References

  1. 1.
    Golis, M.J.: An Introduction to Nondestructive Testing. American Society of Nondestructive Testing, Columbus (1991) Google Scholar
  2. 2.
    Cartz, L.: Nondestructive Testing. ASM International, Materials Park (1995) Google Scholar
  3. 3.
    Cartz, L.: Nondestructive Testing, Radiography, Ultrasonic, Liquid Penetrant, Magnetic Particle, Eddy Current. ASM International, Materials Park (1995) Google Scholar
  4. 4.
    Vikhagen, E.: Nondestructive testing by use of TV holography and deformation phase gradient calculation. Appl. Opt. 29(1), 137–144 (1990) CrossRefGoogle Scholar
  5. 5.
    De Angelis, G., Meo, M., Almond, D.P., Pickering, S.G., Angioni, S.L.: A new technique to detect defect size and depth in composite structures using digital shearography and unconstrained optimization. Nondestruct. Test. Eval. Int. 45(1), 91–96 (2012) Google Scholar
  6. 6.
    Maldague, X.: Theory and Practice of Infrared Technology for Nondestructive Testing. Wiley, New York (2001) Google Scholar
  7. 7.
    Maldague, X.P.V.: Introduction to NDT by active infrared thermography. Mater. Eval. 60(9), 1060–1073 (2002) Google Scholar
  8. 8.
    Zainal Abidin, I., Yun Tian, G., Wilson, J., Yang, S., Almond, D.: Quantitative evaluation of angular defects by pulsed eddy current thermography. Nondestruct. Test. Eval. Int. 43(7), 537–546 (2010) Google Scholar
  9. 9.
    Holland, S.D., Renshaw, J.: Physics-based image enhancement for infrared thermography. Nondestruct. Test. Eval. Int. 43(5), 440–445 (2010) Google Scholar
  10. 10.
    Sakagami, T., Kubo, S.: Development of a new crack identification technique based on near-tip singular electrothermal field measured by lock-in infrared thermography. JSME Int. J. Ser. A 44(4), 528–534 (2001) CrossRefGoogle Scholar
  11. 11.
    Li, T., Almond, D.P., Andrew, D., Rees, S.: Crack imaging by scanning pulsed laser spot thermography. Nondestruct. Test. Eval. Int. 44, 216–225 (2011) Google Scholar
  12. 12.
    Gruss, C., Lepoutre, F., Balageas, D.: Nondestructive evaluation using a flying-spot camera. In: Proceedings of 8th Int. THERMO Conference, Budapest (1993) Google Scholar
  13. 13.
    Legrandjacques, L., Krapez, J.-C., Lepoutre, F., Balageas, D.: Nothing but the cracks: a new kind of photothermal camera. In: Proceedings of 7th European Conference on Nondestructive Testing, Copenhagen (1998) Google Scholar
  14. 14.
    Krapez, J.-C., Legrandjacques, L., Lepoutre, F., Balageas, D.: Optimization of the photothermal camera of crack detection. QIRT 1998 Archives: Documents and sessions presented during the 4th Conference on QIRT, Lodz, Poland (1998) Google Scholar
  15. 15.
    Schlighting, J., Ziegler, M., Maierhofer, C., Kreutzbruck, M.: Flying laser spot thermography for the fast detection of surface breaking cracks. In: 18th Word Conference on Nondestructive Testing, Durban, South Africa (2012) Google Scholar
  16. 16.
    Li, T., Almond, D.P., Rees, D.A.S.: Crack imaging by scanning laser line thermography and laser spot thermography. Meas. Sci. Technol. 22(3), 035701 (2011) CrossRefGoogle Scholar
  17. 17.
    Kuo, P.K., Feng, Z.J., Ahmed, T., Favro, L.D., Thomas, R.L., Hartikainen, J.: Parallel thermal wave imaging using a vector lock-in video technique. In: Hess, P., Petzl, J. (eds.) Photoacoustic and Photothermal Phenomena, pp. 415–418. Springer, Heidelberg (1987) Google Scholar
  18. 18.
    Busse, G.: From photothermal radiometry to lock-in thermography methods. J. Phys. Conf. Ser. 214, 012003 (2010) CrossRefGoogle Scholar
  19. 19.
    Breitenstein, O., Warta, W., Langenkamp, M.: Lock-in Thermography, Basics and Use for Evaluating Electronic Devices and Materials, 2nd edn. Springer Series in Advanced Microelectronics, vol. 10. Springer, Berlin (2010) Google Scholar
  20. 20.
    Maldague, X., Marinetti, S.: Pulse phase infrared thermography. J. Appl. Phys. 79, 2694–2698 (1996) CrossRefGoogle Scholar
  21. 21.
    Dillenz, A., Zweschper, T., Riegert, G., Busse, G.: Progress in phase angle thermography. Rev. Sci. Instrum. 74, 417–419 (2003) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Y. Fedala
    • 1
  • M. Streza
    • 1
    • 2
  • F. Sepulveda
    • 1
  • J.-P. Roger
    • 3
  • G. Tessier
    • 3
    • 4
    • 5
  • C. Boué
    • 6
  1. 1.LPEMESPCIParisFrance
  2. 2.NIR&DIMTCluj-NapocaRomania
  3. 3.ESPCI, Institut LangevinUMR CNRS 7587ParisFrance
  4. 4.Neurophotonics LaboratoryCNRS UMR 8250ParisFrance
  5. 5.Université Paris 5 DescartesParisFrance
  6. 6.LPEM, UMR CNRS 8213UPMC/ESPCIParisFrance

Personalised recommendations