Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Air-Coupled Impact-Echo Delamination Detection in Concrete Using Spheres of Ice for Excitation

  • 578 Accesses

  • 7 Citations

Abstract

The aims of this paper are to demonstrate that ice can be used as a suitable impactor to excite the acoustic modes in concrete associated with delaminations and to compare ice sphere impacts with traditional steel ball impacts. Simultaneous acoustic recordings and high-speed photography of representative low-velocity impacts with parametric analysis compare impact characteristics of steel balls and ice spheres on intact and delaminated concrete. These results agree qualitatively with Hertzian contact theory for low-velocity impacts. Excitation of concrete using continuous impacts of ice spheres of multiple sizes and a frequency analysis allows the acoustic signature of delaminations to be classified. The use of ice as an impactor for excitation of acoustic modes in concrete is thus demonstrated.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    ASCE. (2013, 6/17/2013). 2013 Report Card for America’s Infrastructure. Available: http://www.infrastructurereportcard.org/

  2. 2.

    Gucunski, N., Imani, A., Romero, F., Nazarian, S., Yuan, D., Wiggenhauser, H., et al.: Nondestructive Testing to Identify Concrete Bridge Deck Deterioration. Transportation Research Board, Washington, D.C. (2013)

  3. 3.

    Gucunski, N., Romero, F., Kruschwitz, S., Feldmann, R., Abu-Hawash, A., Dunn, M.: Multiple complementary nondestructive evaluation technologies for condition assessment of concrete bridge decks. Transp. Res. Rec. 2201, 34–44 (2010)

  4. 4.

    ASTM Standard D4580: Standard Practice for Measuring Delaminations in Concrete Bridge Decks by Sounding, ed. West Conshohocken, PA: ASTM International (2012)

  5. 5.

    Carino, N.J.: Training: often the missing link in using NDT methods. Constr. Build. Mater. 38, 1316–1329 (2013)

  6. 6.

    Zhu, J.Y., Popovics, J.S.: Imaging concrete structures using air-coupled impact-echo. J. Eng. Mech.—ASCE 133, 628–640 (2007)

  7. 7.

    Dai, X., Haberman, M.R., Tsai, Y.-T., Zhu, J.: Excitation of Rayleigh and zero-group-velocity (ZGV) Lamb waves using air-borne N-waves focused by an ellipsoidal reflector. In: Proceedings of Meetings on Acoustics, vol. 19, p. 030083 (2013)

  8. 8.

    Ryden, N., Lowe, M.J.S., Cawley, P.: Non-contact surface wave testing of pavements using a rolling microphone array. In: NDTCE’09, Non-destructive Testing in Civil Engineering, Nantes, France (2009)

  9. 9.

    Mazzeo, B.A., Patil, A.N., Guthrie, W.S.: Acoustic impact-echo investigation of concrete delaminations using liquid droplet excitation. Nondestruct. Test. Eval. Int. 51, 41–44 (2012)

  10. 10.

    Grinspana, A.S., Gnanamoorthy, R.: Impact force of low velocity liquid droplets measured using piezoelectric PVDF film. Colloids Surf. A, Physicochem. Eng. Asp. 356, 162–168 (2010)

  11. 11.

    Schoefs, F., Abraham, O.: Probabilistic evaluation to improve design of impact-echo sources. Transp. Res. Rec., J. Transp. Res. Board 2313, 109–115 (2012)

  12. 12.

    Schulson, E.M.: The structure and mechanical behavior of ice. JOM—J. Miner. Met. Mater. Soc. 51, 21–27 (1999)

  13. 13.

    Montagnat, M., Castelnau, O., Bons, P.D., Faria, S.H., Gagliardini, O., Gillet-Chaulet, F., et al.: Multiscale modeling of ice deformation behavior. J. Struct. Geol. (2013, in press). http://www.sciencedirect.com/science/article/pii/S0191814113000837

  14. 14.

    Gammon, P., Kiefte, H., Clouter, M., Denner, W.: Elastic constants of artificial and natural ice samples by Brillouin spectroscopy. J. Glaciol. 29, 433–460 (1983)

  15. 15.

    Guegan, P., Othman, R., Lebreton, D., Pasco, F., Villedieu, P., Meyssonnier, J., et al.: Critical impact velocity for ice fragmentation. Proc. Inst. Mech. Eng. Part C, J. Mech. Eng. Sci. 226, 1677–1682 (2012)

  16. 16.

    Higa, M., Arakawa, M., Maeno, N.: Size dependence of restitution coefficients of ice in relation to collision strength. Icarus 133, 310–320 (1998)

  17. 17.

    Goldsmith, W.: Impact: The Theory and Physical Behaviour of Colliding Solids. E. Arnold, London (1960)

  18. 18.

    Stronge, W.J.: Impact Mechanics. Cambridge University Press, Cambridge/New York (2000)

  19. 19.

    Ohtsu, M., Yamada, M., Sonoda, T.: Quantitative evaluation of SIBIE procedure and case studies. Constr. Build. Mater. 48, 1248–1254 (2013)

  20. 20.

    Song, K.I., Cho, G.C.: Numerical study on the evaluation of tunnel shotcrete using the impact-echo method coupled with Fourier transform and short-time Fourier transform. Int. J. Rock Mech. Min. Sci. 47, 1274–1288 (2010)

  21. 21.

    Schubert, F., Kohler, B.: Ten lectures on impact-echo. J. Nondestruct. Eval. 27, 5–21 (2008)

  22. 22.

    Sansalone, M.: Impact-echo: the complete story. ACI Struct. J. 94, 777–786 (1997)

  23. 23.

    Holland, S.D., Chimenti, D.E.: Air-coupled acoustic imaging with zero-group-velocity Lamb modes. Appl. Phys. Lett. 83, 2704–2706 (2003)

  24. 24.

    Gibson, A., Popovics, J.S.: Lamb wave basis for impact-echo method analysis. J. Eng. Mech.—ASCE 131, 438–443 (2005)

  25. 25.

    Tsai, Y.-T., Zhu, J.: Simulation and experiments of airborne zero-group-velocity Lamb waves in concrete plate. J. Nondestruct. Eval. 31, 373–382 (2012)

  26. 26.

    Oh, T.K.: Defect Characterization in Concrete Elements Using Vibration Analysis and Imaging. Doctor of Philosophy, Civil Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois (2012)

  27. 27.

    Piersol, A.G., Paez, T.L.: Harris’ Shock and Vibration Handbook, 6th edn. McGraw-Hill, New York (2010)

  28. 28.

    Colla, C., Lausch, R.: Influence of source frequency on impact-echo data quality for testing concrete structures. Nondestruct. Test. Eval. Int. 36, 203–213 (2003)

  29. 29.

    Song, K.I., Cho, G.C.: Bonding state evaluation of tunnel shotcrete applied onto hard rocks using the impact-echo method. Nondestruct. Test. Eval. Int. 42, 487–500 (2009)

  30. 30.

    Lin, S.K., Lin, Y.C., Hsu, K.T., Yen, T.: Use of the normalized impact-echo spectrum to monitor the setting process of mortar. Nondestruct. Test. Eval. Int. 43, 385–393 (2010)

  31. 31.

    Aggelis, D.G., Shiotani, T., Kasai, K.: Evaluation of grouting in tunnel lining using impact-echo. Tunn. Undergr. Space Technol. 23, 629–637 (2008)

  32. 32.

    Zhang, G., Harichandran, R.S., Ramuhalli, P.: Application of noise cancelling and damage detection algorithms in NDE of concrete bridge decks using impact signals. J. Nondestruct. Eval. 30, 259–272 (2011)

  33. 33.

    Zhang, G., Harichandran, R.S., Ramuhalli, P.: An automatic impact-based delamination detection system for concrete bridge decks. Nondestruct. Test. Eval. Int. 45, 120–127 (2012)

Download references

Acknowledgements

The authors thank the Ira A. Fulton College of Engineering at Brigham Young University for supporting this work, Provo River Constructors for donating the slab, and Raba Kistner Engineering Consultants, Inc. for arranging access to the construction site.

Author information

Correspondence to Brian A. Mazzeo.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mazzeo, B.A., Patil, A.N., Hurd, R.C. et al. Air-Coupled Impact-Echo Delamination Detection in Concrete Using Spheres of Ice for Excitation. J Nondestruct Eval 33, 317–326 (2014). https://doi.org/10.1007/s10921-013-0215-7

Download citation

Keywords

  • Impact-echo
  • Concrete
  • Ice