Journal of Nondestructive Evaluation

, Volume 33, Issue 3, pp 317–326 | Cite as

Air-Coupled Impact-Echo Delamination Detection in Concrete Using Spheres of Ice for Excitation

  • Brian A. Mazzeo
  • Anjali N. Patil
  • Randy C. Hurd
  • Jeffrey M. Klis
  • Tadd T. Truscott
  • W. Spencer Guthrie


The aims of this paper are to demonstrate that ice can be used as a suitable impactor to excite the acoustic modes in concrete associated with delaminations and to compare ice sphere impacts with traditional steel ball impacts. Simultaneous acoustic recordings and high-speed photography of representative low-velocity impacts with parametric analysis compare impact characteristics of steel balls and ice spheres on intact and delaminated concrete. These results agree qualitatively with Hertzian contact theory for low-velocity impacts. Excitation of concrete using continuous impacts of ice spheres of multiple sizes and a frequency analysis allows the acoustic signature of delaminations to be classified. The use of ice as an impactor for excitation of acoustic modes in concrete is thus demonstrated.


Impact-echo Concrete Ice 



The authors thank the Ira A. Fulton College of Engineering at Brigham Young University for supporting this work, Provo River Constructors for donating the slab, and Raba Kistner Engineering Consultants, Inc. for arranging access to the construction site.


  1. 1.
    ASCE. (2013, 6/17/2013). 2013 Report Card for America’s Infrastructure. Available:
  2. 2.
    Gucunski, N., Imani, A., Romero, F., Nazarian, S., Yuan, D., Wiggenhauser, H., et al.: Nondestructive Testing to Identify Concrete Bridge Deck Deterioration. Transportation Research Board, Washington, D.C. (2013) Google Scholar
  3. 3.
    Gucunski, N., Romero, F., Kruschwitz, S., Feldmann, R., Abu-Hawash, A., Dunn, M.: Multiple complementary nondestructive evaluation technologies for condition assessment of concrete bridge decks. Transp. Res. Rec. 2201, 34–44 (2010) CrossRefGoogle Scholar
  4. 4.
    ASTM Standard D4580: Standard Practice for Measuring Delaminations in Concrete Bridge Decks by Sounding, ed. West Conshohocken, PA: ASTM International (2012) Google Scholar
  5. 5.
    Carino, N.J.: Training: often the missing link in using NDT methods. Constr. Build. Mater. 38, 1316–1329 (2013) CrossRefGoogle Scholar
  6. 6.
    Zhu, J.Y., Popovics, J.S.: Imaging concrete structures using air-coupled impact-echo. J. Eng. Mech.—ASCE 133, 628–640 (2007) CrossRefGoogle Scholar
  7. 7.
    Dai, X., Haberman, M.R., Tsai, Y.-T., Zhu, J.: Excitation of Rayleigh and zero-group-velocity (ZGV) Lamb waves using air-borne N-waves focused by an ellipsoidal reflector. In: Proceedings of Meetings on Acoustics, vol. 19, p. 030083 (2013) Google Scholar
  8. 8.
    Ryden, N., Lowe, M.J.S., Cawley, P.: Non-contact surface wave testing of pavements using a rolling microphone array. In: NDTCE’09, Non-destructive Testing in Civil Engineering, Nantes, France (2009) Google Scholar
  9. 9.
    Mazzeo, B.A., Patil, A.N., Guthrie, W.S.: Acoustic impact-echo investigation of concrete delaminations using liquid droplet excitation. Nondestruct. Test. Eval. Int. 51, 41–44 (2012) Google Scholar
  10. 10.
    Grinspana, A.S., Gnanamoorthy, R.: Impact force of low velocity liquid droplets measured using piezoelectric PVDF film. Colloids Surf. A, Physicochem. Eng. Asp. 356, 162–168 (2010) CrossRefGoogle Scholar
  11. 11.
    Schoefs, F., Abraham, O.: Probabilistic evaluation to improve design of impact-echo sources. Transp. Res. Rec., J. Transp. Res. Board 2313, 109–115 (2012) CrossRefGoogle Scholar
  12. 12.
    Schulson, E.M.: The structure and mechanical behavior of ice. JOM—J. Miner. Met. Mater. Soc. 51, 21–27 (1999) CrossRefGoogle Scholar
  13. 13.
    Montagnat, M., Castelnau, O., Bons, P.D., Faria, S.H., Gagliardini, O., Gillet-Chaulet, F., et al.: Multiscale modeling of ice deformation behavior. J. Struct. Geol. (2013, in press).
  14. 14.
    Gammon, P., Kiefte, H., Clouter, M., Denner, W.: Elastic constants of artificial and natural ice samples by Brillouin spectroscopy. J. Glaciol. 29, 433–460 (1983) Google Scholar
  15. 15.
    Guegan, P., Othman, R., Lebreton, D., Pasco, F., Villedieu, P., Meyssonnier, J., et al.: Critical impact velocity for ice fragmentation. Proc. Inst. Mech. Eng. Part C, J. Mech. Eng. Sci. 226, 1677–1682 (2012) Google Scholar
  16. 16.
    Higa, M., Arakawa, M., Maeno, N.: Size dependence of restitution coefficients of ice in relation to collision strength. Icarus 133, 310–320 (1998) CrossRefGoogle Scholar
  17. 17.
    Goldsmith, W.: Impact: The Theory and Physical Behaviour of Colliding Solids. E. Arnold, London (1960) MATHGoogle Scholar
  18. 18.
    Stronge, W.J.: Impact Mechanics. Cambridge University Press, Cambridge/New York (2000) MATHCrossRefGoogle Scholar
  19. 19.
    Ohtsu, M., Yamada, M., Sonoda, T.: Quantitative evaluation of SIBIE procedure and case studies. Constr. Build. Mater. 48, 1248–1254 (2013) CrossRefGoogle Scholar
  20. 20.
    Song, K.I., Cho, G.C.: Numerical study on the evaluation of tunnel shotcrete using the impact-echo method coupled with Fourier transform and short-time Fourier transform. Int. J. Rock Mech. Min. Sci. 47, 1274–1288 (2010) CrossRefGoogle Scholar
  21. 21.
    Schubert, F., Kohler, B.: Ten lectures on impact-echo. J. Nondestruct. Eval. 27, 5–21 (2008) CrossRefGoogle Scholar
  22. 22.
    Sansalone, M.: Impact-echo: the complete story. ACI Struct. J. 94, 777–786 (1997) Google Scholar
  23. 23.
    Holland, S.D., Chimenti, D.E.: Air-coupled acoustic imaging with zero-group-velocity Lamb modes. Appl. Phys. Lett. 83, 2704–2706 (2003) CrossRefGoogle Scholar
  24. 24.
    Gibson, A., Popovics, J.S.: Lamb wave basis for impact-echo method analysis. J. Eng. Mech.—ASCE 131, 438–443 (2005) CrossRefGoogle Scholar
  25. 25.
    Tsai, Y.-T., Zhu, J.: Simulation and experiments of airborne zero-group-velocity Lamb waves in concrete plate. J. Nondestruct. Eval. 31, 373–382 (2012) CrossRefGoogle Scholar
  26. 26.
    Oh, T.K.: Defect Characterization in Concrete Elements Using Vibration Analysis and Imaging. Doctor of Philosophy, Civil Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois (2012) Google Scholar
  27. 27.
    Piersol, A.G., Paez, T.L.: Harris’ Shock and Vibration Handbook, 6th edn. McGraw-Hill, New York (2010) Google Scholar
  28. 28.
    Colla, C., Lausch, R.: Influence of source frequency on impact-echo data quality for testing concrete structures. Nondestruct. Test. Eval. Int. 36, 203–213 (2003) Google Scholar
  29. 29.
    Song, K.I., Cho, G.C.: Bonding state evaluation of tunnel shotcrete applied onto hard rocks using the impact-echo method. Nondestruct. Test. Eval. Int. 42, 487–500 (2009) Google Scholar
  30. 30.
    Lin, S.K., Lin, Y.C., Hsu, K.T., Yen, T.: Use of the normalized impact-echo spectrum to monitor the setting process of mortar. Nondestruct. Test. Eval. Int. 43, 385–393 (2010) Google Scholar
  31. 31.
    Aggelis, D.G., Shiotani, T., Kasai, K.: Evaluation of grouting in tunnel lining using impact-echo. Tunn. Undergr. Space Technol. 23, 629–637 (2008) CrossRefGoogle Scholar
  32. 32.
    Zhang, G., Harichandran, R.S., Ramuhalli, P.: Application of noise cancelling and damage detection algorithms in NDE of concrete bridge decks using impact signals. J. Nondestruct. Eval. 30, 259–272 (2011) CrossRefGoogle Scholar
  33. 33.
    Zhang, G., Harichandran, R.S., Ramuhalli, P.: An automatic impact-based delamination detection system for concrete bridge decks. Nondestruct. Test. Eval. Int. 45, 120–127 (2012) Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Brian A. Mazzeo
    • 1
  • Anjali N. Patil
    • 1
  • Randy C. Hurd
    • 2
  • Jeffrey M. Klis
    • 1
  • Tadd T. Truscott
    • 2
  • W. Spencer Guthrie
    • 3
  1. 1.Department of Electrical and Computer EngineeringBrigham Young UniversityProvoUSA
  2. 2.Department of Mechanical EngineeringBrigham Young UniversityProvoUSA
  3. 3.Department of Civil and Environmental EngineeringBrigham Young UniversityProvoUSA

Personalised recommendations