Skip to main content
Log in

Synthetic Aperture Focusing and Time-of-Flight Diffraction Ultrasonic Imaging—Past and Present

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

The detection of defects in materials and components using ultrasonic nondestructive testing and evaluation techniques is of interest in many industrial areas. Reliable defect detection requires defined and reproducible scanning of the probes along the surface of the components. For post-processing of the recorded rf-data the Synthetic Aperture Focusing Technique SAFT has been successfully applied to improve the performance of ultrasonic testing. For specific defect and component configurations, the Time-of-Flight Diffraction technique TOFD has also been successfully applied for quantitative evaluation of crack sizes. This contribution reviews developments and applications of SAFT and TOFD with reference to representative examples from the past and the present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Prine, D.W.: Synthetic aperture ultrasonic imaging. In: Proc. of the Eng. Appl. of Holography Symposium, p. 287. SPIE Press, Bellingham (1972)

    Google Scholar 

  2. Silk, M.G.: Sizing crack-like defects by ultrasonic means. In: Sharpe, R.S. (ed.) Research Techniques in Non-Destructive Testing, vol. 3. Academic Press, London (1977)

    Google Scholar 

  3. Spies, M., Rieder, H.: Synthetic aperture focusing of ultrasonic inspection data to enhance the probability of detection of defects in strongly attenuating materials. NDT E Int. 43, 425–431 (2010)

    Article  Google Scholar 

  4. Frederick, J.R., Seydel, J.A., Fairchild, R.C.: Improved ultrasonic nondestructive testing of pressure vessels. U.S. Nuclear Regulatory Commission Report NUREG-0007-1 (1976)

  5. Seydel, J.A.: Ultrasonic synthetic aperture focusing techniques in NDT. In: Sharpe, R.S. (ed.) Research Techniques in Nondestructive Testing, vol. 6, pp. 1–47. Academic Press, London (1982)

    Google Scholar 

  6. Johnson, J.: Parameter study of synthetic aperture focusing in ultrasonics. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in QNDE, vol. 1, pp. 735–752. Plenum Press, New York (1982)

    Google Scholar 

  7. Thomson, R.N.: Transverse and longitudinal resolution of the synthetic aperture focusing technique. Ultrasonics 22, 9–15 (1984)

    Article  Google Scholar 

  8. Burch, S.F., Burton, J.T.: Ultrasonic synthetic aperture focusing using planar pulse-echo transducers. Ultrasonics 22, 275–281 (1984)

    Article  Google Scholar 

  9. Doctor, S.R., Hall, T.E., Reid, L.D.: SAFT—the evolution of a signal processing technology for ultrasonic testing. NDT Int. 19, 163–167 (1986)

    Article  Google Scholar 

  10. Kramer, S.: Ultrasonic weld defect sizing using the synthetic aperture focusing technique. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in QNDE, vol. 8, pp. 1995–2002. Plenum Press, New York (1989)

    Google Scholar 

  11. Hughes, M.S., Hsu, D.K., Margetan, F., Thompson, R.B., et al.: Application of SAFT on composites. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in QNDE, vol. 11, pp. 1413–1419. Plenum Press, New York (1992)

    Google Scholar 

  12. Langenberg, K.J., Brandfaß, M., Klaholz, S., et al.: Applied inversion in nondestructive testing. In: Louis, A.K., Engl, H.W., Rundell, W. (eds.) Inverse Problems in Medical Imaging and Nondestructive Testing. Springer, Berlin (1996)

    Google Scholar 

  13. Kline, R.A.: SAFT imaging in anisotropic media. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in QNDE, vol. 18, pp. 913–919. Plenum Press, New York (1999)

    Google Scholar 

  14. Spies, M., Jager, W.: Synthetic aperture focusing for defect reconstruction in anisotropic media. Ultrasonics 41, 125–131 (2003)

    Article  Google Scholar 

  15. Scheben, R., Götz, S., Spies, M., Rieder, H.: Improved quality assurance via the interaction of inspection procedures with simulation and reconstruction algorithms. In: Proceedings of the DACH Meeting 2008, vol. 113-CD. DGZfP, Berlin (2008). Mi.4.B.1 (in German)

    Google Scholar 

  16. Engstrand, C., Kline, R.: Application of SAFT to layered, anisotropic media. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in QNDE. AIP Conference Proceedings CP760, pp. 1151–1158. American Institute of Physics, Melville (2004)

    Google Scholar 

  17. Shlivinski, A., Langenberg, K.J.: Defect imaging with elastic waves in inhomogeneous-anisotropic materials with composite geometries. Ultrasonics 46, 89–104 (2007)

    Article  Google Scholar 

  18. Doctor, S.R., Schuster, G.J., Reid, L.D., Hall, T.E.: Real-time 3D SAFT UT system evaluation and validation. Pacific Northwest National Laboratory, USA, Report NUREG/CR-6344 PNNL-10571 (1996)

  19. Rieder, H., Dillhöfer, A., Spies, M.: MMC-USIS—development of a compact LAN-based inspection system for automated ultrasonic testing, SAFT-evaluation and 3D visualization. In: Proceedings of the DGZfP Annual Meeting 2010, vol. 122-CD, p. 46. DGZfP, Berlin (2010) (in German)

    Google Scholar 

  20. Mayer, K., Marklein, R., Langenberg, K.J., Kreutter, T.: Three-dimensional imaging system based on Fourier-transform synthetic aperture focusing technique. Ultrasonics 28, 241–255 (1990)

    Article  Google Scholar 

  21. Busse, L.J.: Three-dimensional imaging using a frequency-domain synthetic aperture focusing technique. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39, 174–179 (1992)

    Article  Google Scholar 

  22. Lévesque, D., Blouin, A., Néron, C., Monchalin, J.P.: Performance of laser-ultrasonic F-SAFT imaging. Ultrasonics 40, 1057–1063 (2002)

    Article  Google Scholar 

  23. Stepinski, T.: An implementation of synthetic aperture focusing technique in frequency domain. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1399–1408 (2007)

    Article  Google Scholar 

  24. Yamani, A.: Three-dimensional imaging using a new synthetic aperture focusing technique. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 943–947 (1997)

    Article  Google Scholar 

  25. Li, M.L., Guan, W.J., Li, P.C.: Improved synthetic aperture focusing technique with applications in high-frequency ultrasound imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 63–70 (2004)

    Article  Google Scholar 

  26. Schuster, G.J., Doctor, S.R., Bond, L.J.: A system for high-resolution, nondestructive, ultrasonic imaging of weld grains. IEEE Trans. Instrum. Meas. 53, 1526–1532 (2004)

    Article  Google Scholar 

  27. Ruiter, N.V., Schwarzenberg, G.F., Zapf, M., Gemmeke, H.: Improvement of 3D ultrasound computer tomography images by signal pre-processing. In: Ultrasonics Symposium, 2008, IUS 2008, Beijing, China, pp. 852–855. IEEE Press, New York (2008)

    Chapter  Google Scholar 

  28. Lingwall, F., Stepinski, T.: Compensating transducer diffraction effects in synthetic aperture imaging for immersed solids. In: Ultrasonics Symposium, 2002, pp. 719–722. IEEE Press, New York (2002)

    Google Scholar 

  29. Wennerström, E., Stepinski, T.: An iterative synthetic aperture imaging algorithm with correction of diffraction effects. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 1008–1017 (2006)

    Article  Google Scholar 

  30. Lorenz, M., Wielinga, T.S.: Ultrasonic characterization of defects in steel using multi-SAFT imaging and neural networks. NDT E 26, 127–133 (1993)

    Article  Google Scholar 

  31. Krause, M., Mielentz, F., Milmann, B., Streicher, D., Müller, W.: Ultrasonic imaging of concrete elements: state of the art using 2D synthetic aperture. In: International Symposium (NDT-CE 2003) on Non-Destructive Testing in Civil Engineering (2003). http://ndt.net/article/ndtce03/papers/v051/v051.htm

    Google Scholar 

  32. Schickert, M., Krause, M., Müller, W.: Ultrasonic imaging of concrete elements using reconstruction by synthetic aperture focusing technique. J. Mater. Civ. Eng. 15, 235–246 (2003)

    Article  Google Scholar 

  33. Krause, M., Milmann, B., Mielentz, F., Streicher, D., et al.: Ultrasonic imaging methods for investigation of post-tensioned concrete structures: a study of interfaces at artificial grouting faults and its verification. J. Nondestruct. Eval. 27, 67–82 (2008)

    Article  Google Scholar 

  34. Junglewitz, A., Spies, M., Rieder, H.: Operational challenges: extension of propeller welding repairs for a higher availability of ships. In: Proceedings of The Riviera Annual Marine Propulsion Conference 2008, London (2008). http://rivieramm.com

    Google Scholar 

  35. Spies, M., Rieder, H., Dillhöfer, A.: On-site evaluation of large components using SAFT and TOFD ultrasonic imaging. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in QNDE. AIP Conference Proceedings CP1335, pp. 1394–1401. American Institute of Physics, Melville (2011)

    Google Scholar 

  36. Silk, M.G.: The use of diffraction-based time-of-flight measurements to locate and size defects. Br. J. NDT 26, 208–213 (1984)

    Google Scholar 

  37. British Standard BS7706: Guide to calibration and setting-up of the ultrasonic TOFD technique. British Standards Institution (1993)

  38. Charlesworth, J.P., Temple, J.A.G.: Engineering applications of ultrasonic time-of-flight diffraction. Research Studies Press Ltd., Great Britain (2001)

  39. Farley, J.M., Goujon, N.S., Shepherd, B.W.O.: Critical evaluation of TOFD for search scanning. In: Proceedings of the 16th World Conference on NDT, Montreal, Canada (2004). http://ndt.net

    Google Scholar 

  40. AEA Technology Energy: In: Celebrating TOFD’s 25th Anniversary, vol. 4, 6 (1999). http://ndt.net

  41. Martinez-Ona, R., Viggianello, S., Bleuze, A.: On the qualification of TOFD technique for austenitic stainless steel welds inspection. In: Proceedings of the 9th ECNDT, Berlin, Germany, DGZfP-Proceedings 103-CD (2006)

    Google Scholar 

  42. Lin, S., Fukutomi, H., Ogata, T.: Analysis of wave propagation for the TOFD method by finite element method: optimization of test configuration and proposal of a new TOFD method. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in QNDE. AIP Conference Proceedings CP820, pp. 1103–1110. American Institute of Physics, Melville (2005)

    Google Scholar 

  43. de Geus, S.J., Dijkstra, F.H., Bouma, T.: Advances in TOFD inspection. In: Proceedings of the 15th World Conference on NDT, Rome, Italy (2000). http://ndt.net

    Google Scholar 

  44. Chen, Y.: The application of TOFD technique on the large pressure vessel. In: Proceedings of the 17th World Conference on NDT, Shanghai, China (2008). http://ndt.net

    Google Scholar 

  45. Baskaran, G., Balasubramaniam, K., Rao, C.L.: Shear-wave time of flight diffraction (S-TOFD) technique. NDT E Int. 39, 458–467 (2006)

    Article  Google Scholar 

  46. Moura, E., Silva, R., Siqueira, M., Rebello, J.: Pattern recognition of weld defects on pre-processed TOFD signals using linear classifiers. J. Nondestruct. Eval. 23, 163–171 (2004)

    Article  Google Scholar 

  47. da Silva, I.C., Siqueira, M.H.S.: Automatic inspection using the TOFD technique and neural networks. In: Proceedings of the 8th European Conference in Non Destructive Testing, ECNDT, Barcelona (2002). http://ndt.net

    Google Scholar 

  48. Shekhar, C., Shitole, N.: Combining fuzzy logic and neural networks in classification of weld defects using ultrasonic time of flight diffraction. In: 45th Annual British Conference on NDT, NDT 2006, Stratford-upon-Avon, UK (2006)

    Google Scholar 

  49. Meksen, T.M., Boudraa, B., Drai, R., Boudraa, M.: Automatic crack detection and characterization during ultrasonic inspection. J. Nondestruct. Eval. 29, 169–174 (2010)

    Article  Google Scholar 

  50. Kechida, A., Drai, R., Guessoum, A.: Texture analysis for flaw detection in ultrasonic images. J. Nondestruct. Eval. (2011). Published online 7 Dec. 2011

  51. Krautkrämer, J., Krautkrämer, H.: Ultrasonic Testing of Materials. Springer, Berlin (1990)

    Google Scholar 

  52. Spies, M.: Semi-analytical elastic wave-field modeling applied to arbitrarily oriented orthotropic media. J. Acoust. Soc. Am. 110, 68–79 (2001)

    Article  Google Scholar 

  53. Mondal, S., Sattar, T.: An overview TOFD method and its mathematical model (2000). http://www.ndt.net/article/v05n04/mondal/mondal.htm

  54. Schmitz, V.: Nondestructive acoustic imaging techniques. In: Fink, M., et al. (eds.) Imaging of Complex Media with Acoustic and Seismic Waves. Topics Appl. Phys., vol. 84, pp. 167–190. Springer, Berlin (2002)

    Chapter  Google Scholar 

  55. Doctor, S.R.: Nuclear power plant NDE challenges—past, present and future. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in QNDE. AIP Conference Proceedings CP894, pp. 17–31. American Institute of Physics, Melville (2007)

    Google Scholar 

  56. Office of Inspection and Enforcement: Stress corrosion cracking in large-diameter stainless steel recirculation system piping at BWR plants, IE Bulletin No. 83-02, US Nuclear Regulatory Commission, Washington, D.C., USA, March 4, 1983

  57. Ogilvy, J.A.: Theory of Wave Scattering from Random Rough Surfaces. Adam Hilger, Bristol, Philadelphia and New York (1991)

    MATH  Google Scholar 

  58. Dugan, S., Wagner, S., Zickler, S.: Manufacturing of test specimens with realistic defects for ultrasonic testing. In: Proceedings of the DGZfP Annual Meeting 2010, vol. 122-CD. DGZfP, Berlin (2010). Di.2.B.3 (in German)

    Google Scholar 

  59. Rieder, H., Dillhöfer, A., Spies, M., Graff, A., Orth, Th., Kersting, Th.: SAFT- and TOFD-evaluation for the ultrasonic weld inspection of longitudinally welded large diameter pipes. In: Proceedings of the DGZfP Annual Meeting 2010, vol. 122-CD. DGZfP, Berlin (2010). Mi.2.A.1 (in German)

    Google Scholar 

  60. Langenberg, K.J.: Introduction to the special issue on inverse problems. Wave Motion 11, 99–112 (1989)

    Article  MATH  Google Scholar 

  61. Holmes, C., Drinkwater, B.W., Wilcox, P.D.: Post-processing of the full matrix of ultrasonic transmit-receive array data for non-destructive evaluation. NDT E Int. 38, 701–711 (2005)

    Article  Google Scholar 

  62. Yonetsiji, E., Murakami, T., Braconnier, D.: Inspection of thick part with phased array volume focusing technique. In: Proceedings of the 9th European Conference on NDT, vol. 103-CD, DGZfP, Berlin (2006). We.1.2.2

    Google Scholar 

  63. Spies, M., Rieder, H., Didion, Ch., Santraine, B., Licht, R., Gebhardt, W.: A conclusive concept for three-dimensional imaging based on efficient steering and focusing of an ultrasonic 2D-array. In: Proceedings of the 9th European Conference on NDT, vol. 103-CD. DGZfP, Berlin (2006). Fr.1.1.3

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the following people for their many valuable contributions: Dr. Sandra Dugan, Materialprüfanstalt MPA Stuttgart, Germany; Alfred Graff, Dr. Thomas Orth, Salzgitter-Mannesmann Forschung, Duisburg, Germany; Thomas Kersting, Europipe, Mülheim/Ruhr, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Spies.

Additional information

V. Schmitz, W. Müller former affiliation, now retired.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spies, M., Rieder, H., Dillhöfer, A. et al. Synthetic Aperture Focusing and Time-of-Flight Diffraction Ultrasonic Imaging—Past and Present. J Nondestruct Eval 31, 310–323 (2012). https://doi.org/10.1007/s10921-012-0150-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10921-012-0150-z

Keywords

Navigation