Skip to main content

Characterization of Material Properties of 2xxx Series Al-Alloys by Non Destructive Testing Techniques

Abstract

2xxx series Al-alloys are widely employed in structural applications due to their good mechanical properties. During heat treatment of these alloys, solution treated parts sometimes mixed with age hardened parts during handling. This result in difficulty in distinguishing between solution treated and aged parts of various grades. Moreover, it is also necessary to separate improper aged parts from properly treated parts. The traditional methods of characterization of different heat treated parts are hardness, tension testing and microscopy, however these are destructive in nature and sometimes not desired particularly for finished products. The main purpose of this paper is characterization of material properties of 2xxx series Al-alloys by eddy current and ultrasonic NDE techniques so that the inspection can be carried out effectively in the shortest possible time. Three wrought Al-alloys of 2xxx series (AA 2014, AA 2024 and AA 2219) were homogenized followed by solution heat treatment and age hardening treatments at specific temperatures for 1–16 h. The changes in hardness and microstructure during heat treatments were determined by traditional material characterization methods and then correlated with electrical conductivity, sound velocity and attenuation coefficient obtained through Nondestructive Evaluation (NDE) techniques. Results demonstrated an excellent correlation between hardness and sound velocity, whereas extend of aging can be easily predicted by electrical conductivity, and attenuation coefficient measurement. Investigation suggested a way towards the non-destructive detection and characterization of material properties when conventional testing methods are not applicable.

This is a preview of subscription content, access via your institution.

References

  1. Hatch, J.E.: Aluminum: Properties and Physical Metallurgy. ASM, Metals Park (1984)

    Google Scholar 

  2. Doherthy, R.D.: In: Cahn, R.W., Haasen, P. (eds.) Physical Metallurgy. Amsterdam, Elsevier (1996)

    Google Scholar 

  3. Bassani, P., Gariboldi, E., Vimercati, G.: Calorimetric analyses on aged Al–4.4Cu–0.5Mg–0.9Si–0.8Mn alloy (AA 2014 grade). J. Therm. Anal. Calorim. 87(1), 247–253 (2007)

    Article  Google Scholar 

  4. Badini, C., Marino, F., Verne, E.: Calorimetric study on precipitation path in 2024 alloy and its SiC composite. Mater. Sci. Eng. A 191, 185–191 (1995)

    Article  Google Scholar 

  5. Chakrabarti, D.J., Laughlin, D.E.: Phase relations and precipitation in Al–Mg–Si Alloys with Cu Additions. Prog. Mater. Sci. 49, 389–410 (2004)

    Article  Google Scholar 

  6. Sheppard, T.: Extrusion of Aluminium Alloys, vol. 5, pp. 205–245. Kluwer Academic, Dordrecht (1999)

    Google Scholar 

  7. Raj, B.: NDE methodologies for characterization of defects, stresses and microstructure in pressure vessels and pipes. Int. J. Press. Vessels Piping 73(2), 133–146 (1997)

    Article  Google Scholar 

  8. Jayakumar, T., Raj, B., Willems, H., Arnold, W.: Influence of microstructure on ultrasonic velocity in Nimonic alloy PE16. In: Review of Progress in Quantitative. NDE, vol. 10b, pp. 1693–1700. Plenum Press, New York (1991)

    Google Scholar 

  9. Jayakumar, T.: Microstructural characterisation in metallic materials using ultrasonic and magnetic methods. Ph.D. Thesis, University of Saarland, Saarbruecken, Germany (1997)

  10. Kumar, A., Choudhary, B.K., Jayakumar, T., Bhanu, K., Rao, S., Raj, B.: Influence of long term thermal ageing on ultrasonic velocity in 9Cr–1Mo ferritic steel. Mater. Sci. Technol. 19(5), 637–641 (2003)

    Article  Google Scholar 

  11. Kumar, A., Shankar, V., Bhanu, K., Rao, S., Jayakumar, T., Raj, B.: Correlation of microstructure and mechanical properties with ultrasonic velocity in the Nickel base superalloy Inconel 625. Philos. Mag. A 82(13), 2529–2542 (2002)

    Article  Google Scholar 

  12. Hutchinson, B., Moss, B., Smith, A., Astill, A., Scruby, C., Engberg, G., Bjorklund, J.: Online characterisation of steel structures in hot strip mill using laser ultrasonic measurements. Ironmak. Steelmak. 29(1), 77–80 (2002)

    Article  Google Scholar 

  13. Rajkumar, K.V., Kumar, A., Jayakumar, T., Raj, B., Ray, K.K.: Characterization of aging behavior in M250 grade maraging steel using ultrasonic measurements. Metall. Mater. Trans. A 38A, 236–243 (2008)

    Google Scholar 

  14. Banerjee, S., Shah, B.K.: Characterization of industrial materials. In: Sridhar, G., Chowdhary, S.G., Goswami, N.G. (eds.) Material Characterization Techniques—Principals and Applications, pp. 1–15 (1999)

    Google Scholar 

  15. Kruger, S.E., Lamouche, G., Monchalin, J.P., Kolarik, R. II, Jeskey, G., Choquet, M.: On-line monitoring of wall thickness and austenite grain size on a seamless tubing production line at the Timken Co. Iron Steel Technol. 2, 25–31 (2005)

    Google Scholar 

  16. Dubois, M., Militzer, M., Moreau, A., Bussiere, J.: A new technique for the quantitative real-time of austenite grain growth in steel. Scr. Mater. 42, 867–874 (2000)

    Article  Google Scholar 

  17. Palanichamy, P., Joseph, A., Jayakumar, T., Raj, B.: Ultrasonic velocity measurements for estimation of grain size in austenitic stainless steel. NDT E Int. 28(3), 179 (1995)

    Article  Google Scholar 

  18. Murav’ev, V.V.: Effects of heat treatment on the speed of ultrasound in aluminum alloys. Sov. J. Nondestruct. Test. 25(11), 832–839 (1989)

    MathSciNet  Google Scholar 

  19. Rosen, M., Ives, L., Biancaniello, F., Mehrabian, R.: Correlation between ultrasonic and hardness measurements in aged aluminum alloy 2024. Mater. Sci. Eng. 74, 1–10 (1985)

    Article  Google Scholar 

  20. Rosen, M., Horowitz, E., Fick, S., Reno, R.C., Mehrabian, R.: An investigation of the precipitation-hardening process in aluminum alloy 2219 by means of sound wave velocity and ultrasonic attenuation. Mater. Sci. Eng. 53(2), 163–177 (1982)

    Article  Google Scholar 

  21. Vasudevan, M., Palanichamy, P.: Characterization of microstructural changes during annealing of cold worked austenitic stainless steel using ultrasonic velocity measurements and correlation with mechanical properties. J. Mater. Eng. Perform. 11(2), 169–179 (2002)

    Article  Google Scholar 

  22. Murav’ev, V.V.: Interrelationship of the velocity of an ultrasonic wave in steels and their heat cycles. Sov. J. Nondestruct. Test. 25(2), 135–137 (1989)

    MathSciNet  Google Scholar 

  23. Dubois, M., Moreau, A., Bussière, J.F.: Ultrasonic velocity measurements during phase transformations in steels using laser-ultrasonics. J. Appl. Phys. 89, 6487–6495 (2001)

    Article  Google Scholar 

  24. Shark, L.K., Yu, C.: Automatic estimation of ultrasonic attenuation for porosity evaluation in composite materials. In: Proc. of 15th World Conference on NDT (2000)

    Google Scholar 

  25. Daniel, I.M., Wooh, S.C., Komsky, I.: Quantitative Porosity characterization of composite materials by means of ultrasonic attenuation measurements. J. Nondestruct. Eval. 11(1), 1–8 (1992)

    Article  Google Scholar 

  26. Mansour, T.M.: Ultrasonic inspection of spot welds in thin-gage steel. Mater. Eval. 46, 650–658 (1988)

    Google Scholar 

  27. Rokhlin, S.I., Meng, S., Adler, L.: In-process ultrasonic evaluation of spot welds. Mater. Eval. 47, 935–943 (1989)

    Google Scholar 

  28. Vary, A.: Ultrasonic Nondestructive evaluation, microstructure, and mechanical property interrelations. NASA Technical Memorandum 86876, Lewis Research Center, Cleveland Ohio (1984)

  29. Kumar, A., Jayakumar, T., Raj, B.: Ultrasonic spectral analysis for microstructural characterization in austenitic and ferritic steels. Philos. Mag. A 80(11), 2469–2487 (2000)

    Article  Google Scholar 

  30. Nanekar, P.P., Shah, B.K.: Characterization of material properties by ultrasonics. BARC Newsl. 249, 25–38 (2003)

    Google Scholar 

  31. Nanekar, P.P.: Non-destructive characterization of ceramics and concrete structure. In: Testing and Quality Control. ASM India Section, Mumbai (2001)

    Google Scholar 

  32. Smith, R.L.: Ultrasonic attenuation, microstructure and ductile to brittle transition temperature in Fe–C alloys. Mater. Eval. 41, 219–222 (1983)

    Google Scholar 

  33. Kwun, S.I., Hong, S.T., Choo, W.Y.: Ultrasonic nondestructive evaluation of microstructure and strength of carbon steels. J. Mater. Sci. Lett. 19, 1453–1456 (2000)

    Article  Google Scholar 

  34. Vasudevan, M., Palanichamy, P., Venkadesan, S.: A novel technique for characterizing annealing behavior. Scr. Metall. Mater. 30(11), 1479–1483 (1994)

    Article  Google Scholar 

  35. Jayakumar, T., Mukhopadhyay, C.K., Kasi Viswanathan, K.V., Raj, B.: Acoustic and magnetic methods for characterisation of microstructures and tensile deformation in AISI type 304 stainless steel. Trans. Indian Inst. Mat. 51(6), 485–509 (1998)

    Google Scholar 

  36. Palanichamy, P., Vasudevan, M., Jayakumar, T., Venugopal, S., Raj, B.: Ultrasonic velocity measurements for characterizing the annealing behavior of cold worked austenitic stainless steel. NDT E Int. 28(3), 179–185 (1995)

    Article  Google Scholar 

  37. Dobmann, G.: Non-destructive characterization of materials: a growing demand for describing damage and service life relevant ageing process in plant components. Nucl. Eng. Des. 171, 95–112 (1997)

    Article  Google Scholar 

  38. Raj, B.: NDE methodologies for characterization of defects, stresses and microstructure in pressure vessels and pipes. Int. J. Press. Vessels Piping 73(2), 133–146 (1997)

    Article  Google Scholar 

  39. Theiner, W.A.: Non-destructive analysis of the structure of pressure vessel steels by micromagnetic testing techniques. Nucl. Eng. Des. 76(3), 251–260 (1983)

    Article  Google Scholar 

  40. Dobmann, G.: Nondestructive characterization of materials (ultrasonic and magnetic techniques) for strength and toughness prediction and the detection of early creep damage. Nucl. Eng. Des. 157, 137–158 (1992)

    Article  Google Scholar 

  41. Kruger, S.E.: Hydrogen damage detection by ultrasonic spectral analysis. NDT E Int. 32, 275–281 (1999)

    Article  Google Scholar 

  42. Ikuta, E.: In: Proc. of the 13th International Conference in the Nuclear and Pressure Vessel Industries, Kyoto, Japan, pp. 285–289 (1985)

    Google Scholar 

  43. Berger, H.: Nondestructive characterization of materials. Mater. Eval. 50, 299–305 (1992)

    Google Scholar 

  44. Rosen, M., Horowits, E., Swartzendruber, L., Fick, S., Mehrabian, R.: The aging process in aluminum alloy 2024 studied by means of eddy currents. Mater. Sci. Eng. 53(2), 191–198 (1982)

    Article  Google Scholar 

  45. Tiryakioglu, M., Campbell, J., Staley, J.T.: Hardness-strength relationships in cast Al–Si–Mg alloys. Mater. Sci. Forum 331–337, 295–300 (2000)

    Article  Google Scholar 

  46. Brasche, L.J.H., Bracci, D.J., Jiles, D.C., Buck, O.: Correlation of mechanical properties with non-destructive evaluation measurements in Al–Li alloys. Mater. Sci. Eng. A 119, 7–15 (1989)

    Article  Google Scholar 

  47. Koch, G.H., Kolijn, D.T.: The heat treatment of the commercial aluminum alloy 7075. J. Heat Treat. 1(2), 3–14 (1979)

    Article  Google Scholar 

  48. Salazar-Guapuriche, M.A., Zhao, Y.Y., Pitman, A., Greene, A.: Correlation of strength with hardness and electrical conductivity for aluminium alloy 7010. Mater. Sci. Forum 519–521, 853–858 (2006)

    Article  Google Scholar 

  49. Naimon, E.R., Ledbetter, H.M., Weston, W.F.: Low-temperature elastic properties of four wrought and annealed aluminum alloys. J. Mater. Sci. 10, 1309–1316 (1975)

    Article  Google Scholar 

  50. Rajendran, V., Muthukumaran, S., Jayakumar, T., Palanichamy, P., Raj, B.: Ultrasonic studies for microstructural characterization of A98090 aluminum-lithium alloy. Mater. Eval. 63(8), 837–842 (2005)

    Google Scholar 

  51. Ambardar, R., Jayakumar, T., Pathak, S.D., Prabhakar, O.: Ultrasonic velocity measurement to assess casting quality. Insight 38(7), 502–508 (1996)

    Google Scholar 

  52. Sarkar, S., Wells, M.A., Poole, W.J.: Softening behaviour of cold rolled continuous cast and ingot cast aluminum alloy AA 5754. Mater. Sci. Eng. A 421(1–2), 276–285 (2006)

    Google Scholar 

  53. Raeisinia, B., Poole, W.J.: Electrical resistivity measurements: a sensitive tool for studying aluminium alloys. Mater. Sci. Forum 519–521, 1391–1396 (2006)

    Article  Google Scholar 

  54. Hagemaier, D.J.: Evaluation of heat-damage to aluminum aircraft structures. Mater. Eval. 40(9), 962–969 (1982)

    Google Scholar 

  55. Vedula, K.M., Heckel, R.W.: Spheroidization of binary Fe–C alloys over a range of temperatures. Metall. Trans. 1, 9 (1970)

    Google Scholar 

  56. Ying, C.F., Truell, R.: Scattering of a plane longitudinal wave by a spherical obstacle in an isotropically elastic solid. J. Appl. Phys. 27, 1086 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  57. Gür, C.H., Yildiz, I.: Determining the impact toughness of age-hardened 2024 AL-alloy by nondestructive measurements. In: Proc. of the 16th World Conference on NDT, Montreal, Canada (2004)

    Google Scholar 

  58. Papadakis, E.P.: Ultrasonic attenuation and velocity in SAE 52100 steel quenched from various temperatures. Metall. Trans. 1, 1053 (1970)

    Google Scholar 

  59. Rosen, M.: Eddy current analysis of precipitation kinetics in aluminum alloys. Metall. Trans. A 20A, 605 (1989)

    Google Scholar 

  60. Rosen, M.: In: Vary, A. (ed.) Materials Analysis by Ultrasonics, p. 79. Noyes, Park Ridge (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fawad Tariq.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tariq, F., Naz, N., Baloch, R.A. et al. Characterization of Material Properties of 2xxx Series Al-Alloys by Non Destructive Testing Techniques. J Nondestruct Eval 31, 17–33 (2012). https://doi.org/10.1007/s10921-011-0117-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10921-011-0117-5

Keywords

  • AA 2024
  • AA 2014
  • AA 2219
  • Aluminum alloys
  • Precipitation hardening
  • Ultrasonic testing
  • Eddy current testing