Thermographic Monitoring of Aluminium Foaming Process

Abstract

A novel method for measuring the temperature distribution and evolution of metal foams in the molten state is proposed. Foamable AlSi9 precursor material containing 0.6 wt% TiH2 was foamed, kept at high temperatures and solidified while its temperature distribution was monitored by a thermographic camera. Free foaming and foaming inside a closed mould were carried out and direct and screened IR monitoring have been tested. Different heating conditions were applied giving rise to homogeneous and inhomogeneous temperature distributions. The effect of oxidation was studied on a piece of pure aluminium for reference purposes. The error sources of the measured temperature were analysed. Direct monitoring of foams was shown to be associated to serious problems with quantitative temperature measurement, while screened monitoring yielded promising and accurate quantitative results.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Banhart, J.: Manufacture, characterization and application of cellular metals and metal foams. Prog. Mater. Sci. 46, 559–632 (2001)

    Article  Google Scholar 

  2. 2.

    McCullough, K.Y.G., Fleck, N.A., Ashby, M.F.: Uniaxial stress-strain behavior of aluminium alloy foams. Acta Mater. 47, 2323–2330 (1999)

    Article  Google Scholar 

  3. 3.

    Körner, C., Arnold, M., Singer, R.F.: Metal foam stabilization by oxide network particles. Mater. Sci. Eng. A 396, 28–40 (2005)

    Article  Google Scholar 

  4. 4.

    Körner, C., Hirschmann, M., Bräutigam, V., Singer, R.F.: Endogenous particle stabilization during magnesium integral foam production. Adv. Eng. Mater. 6, 385–390 (2005)

    Article  Google Scholar 

  5. 5.

    Babcsán, N., Leitlmeier, D., Degischser, H.P.: Foamability of particle reinforced aluminium melt. Mater.Wiss. Werkst.tech 34, 22–29 (2003)

    Article  Google Scholar 

  6. 6.

    Banhart, J.: Metal foams: production and stability. Adv. Eng. Mater. 8, 781–794 (2006)

    Article  Google Scholar 

  7. 7.

    Gergely, V., Clyne, B.: The FORMGRIP process: foaming of reinforced metals by gas release in precursors. Adv. Eng. Mater. 2, 175–178 (2000)

    Article  Google Scholar 

  8. 8.

    Bryant, D., et al.: Method for producing foamed aluminum products by use of selected carbonate decomposition products. US Patent application 2006/0243094 A1

  9. 9.

    Körner, C., Hirschmann, M., Wiehler, H.: Integral foam moulding of light metals. Mater. Trans. 47, 2188–2194 (2006)

    Article  Google Scholar 

  10. 10.

    Solórzano, E., Reglero, J.A., Rodríguez-Pérez, M.A., de Saja, J.A., Rodríguez-Méndez, M.L.: Improvement of the foaming process for 4045 and 6061 aluminium foams by using the Taguchi methodology. J. Mater. Sci. 42, 7227–7238 (2007)

    Article  Google Scholar 

  11. 11.

    Matijasevic-Lux, B., Banhart, J., Fiechter, S., Görke, O., Wanderka, N.: Modification of titanium hydride for improved aluminium foam manufacture. Acta Mater. 54, 1887–1900 (2006)

    Google Scholar 

  12. 12.

    von Zeppelin, F., Hirscher, M., Stanzick, H., Banhart, J.: Desorption of hydrogen from blowing agents used for foaming metals. Comput. Sci. Tech. Rep. 63, 2293–2300 (2003)

    Article  Google Scholar 

  13. 13.

    Wübben, T., Stanzick, H., Banhart, J., Odenbach, S.: Stability of metallic foams studied under microgravity. J. Phys. Condens. Matter 15, S427–S433 (2003)

    Article  Google Scholar 

  14. 14.

    Helwig, H.M., Banhart, J.: In: Banhart, J., Fleck, N.A., Mortensen, A. (eds.) Cellular Metals and Metal Foaming Technology, pp. 165–168. MIT Press, Cambridge (2003)

    Google Scholar 

  15. 15.

    Linnander, B.: When it’s too hot to touch use infrared thermography. IEEE Circuits Devices Mag. 9, 35–37 (1993)

    Article  Google Scholar 

  16. 16.

    Speka, M., Matteï, S., Pilloz, M., Ilie, M.: The infrared thermography control of the laser welding of amorphous polymers. NDT E Int. 41, 178–183 (2008)

    Article  Google Scholar 

  17. 17.

    Brügemann, G., Mahrle, A., Benziger, T.: Comparison of experimental determined and numerical simulated temperature fields for quality assurance at laser beam welding of steels and aluminium alloying,s. NDT E Int. 33, 453–463 (2000)

    Article  Google Scholar 

  18. 18.

    Haferkamp, H., Bach, F.-W., Niemeyer, M., Viets, R., Weber, J., Breuer, M., Krussel, T.: Tracing thermal process of permanent mould casting. In: Proc. IEEE Int. Symp. Industrial Electronics, vol. 3(3), pp. 1442–1447 (1999)

  19. 19.

    Netzelmann, U., Abuhamad, M., Walle, G.: Thermographic observation of heat transport in solid foams. J. Phys. IV 125, 511–513 (2005)

    Article  Google Scholar 

  20. 20.

    Maldague, X.P.V.: Theory and Practice of Infrared Technology for Nondestructive Testing. Willey, New York (2001)

    Google Scholar 

  21. 21.

    Reynolds, P.M.: Spectral emissivity of 99.7% aluminium between 200 and 540°C. Br. J. Appl. Phys. 12, 111–114 (1961)

    Article  MathSciNet  Google Scholar 

  22. 22.

    Abramoff, M.D., Magelhaes, P.J., Ram, S.J.: Image processing with imageJ. Biophoton. Int. 11, 36–42 (2004)

    Google Scholar 

  23. 23.

    Tang, Q.-Q., Huang, G.-C.: The research and application of phase change thermography technique. Exp. Meas. Fluid Mech. 17, 15–17 (2003)

    MathSciNet  Google Scholar 

  24. 24.

    Nagashio, K., Murata, H., Kuribayashi, K.: In situ observation of solidification behavior of Si melt dropped on Si wafer by IR thermography. J. Cryst. Growth 275, e1685–e1690 (2005)

    Article  Google Scholar 

  25. 25.

    García Moreno, F., Fromme, M., Banhart, J.: Real-time X-ray radioscopy on metallic foams using a compact micro-focus source. Adv. Eng. Mater. 6, 416–420 (2004)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. Solórzano.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Solórzano, E., Garcia-Moreno, F., Babcsán, N. et al. Thermographic Monitoring of Aluminium Foaming Process. J Nondestruct Eval 28, 141 (2009). https://doi.org/10.1007/s10921-009-0056-6

Download citation

  • Thermography
  • Aluminium
  • Foam