Advertisement

Thermographic Monitoring of Aluminium Foaming Process

  • E. Solórzano
  • F. Garcia-Moreno
  • N. Babcsán
  • J. Banhart
Article

Abstract

A novel method for measuring the temperature distribution and evolution of metal foams in the molten state is proposed. Foamable AlSi9 precursor material containing 0.6 wt% TiH2 was foamed, kept at high temperatures and solidified while its temperature distribution was monitored by a thermographic camera. Free foaming and foaming inside a closed mould were carried out and direct and screened IR monitoring have been tested. Different heating conditions were applied giving rise to homogeneous and inhomogeneous temperature distributions. The effect of oxidation was studied on a piece of pure aluminium for reference purposes. The error sources of the measured temperature were analysed. Direct monitoring of foams was shown to be associated to serious problems with quantitative temperature measurement, while screened monitoring yielded promising and accurate quantitative results.

Thermography Aluminium Foam 

References

  1. 1.
    Banhart, J.: Manufacture, characterization and application of cellular metals and metal foams. Prog. Mater. Sci. 46, 559–632 (2001) CrossRefGoogle Scholar
  2. 2.
    McCullough, K.Y.G., Fleck, N.A., Ashby, M.F.: Uniaxial stress-strain behavior of aluminium alloy foams. Acta Mater. 47, 2323–2330 (1999) CrossRefGoogle Scholar
  3. 3.
    Körner, C., Arnold, M., Singer, R.F.: Metal foam stabilization by oxide network particles. Mater. Sci. Eng. A 396, 28–40 (2005) CrossRefGoogle Scholar
  4. 4.
    Körner, C., Hirschmann, M., Bräutigam, V., Singer, R.F.: Endogenous particle stabilization during magnesium integral foam production. Adv. Eng. Mater. 6, 385–390 (2005) CrossRefGoogle Scholar
  5. 5.
    Babcsán, N., Leitlmeier, D., Degischser, H.P.: Foamability of particle reinforced aluminium melt. Mater.Wiss. Werkst.tech 34, 22–29 (2003) CrossRefGoogle Scholar
  6. 6.
    Banhart, J.: Metal foams: production and stability. Adv. Eng. Mater. 8, 781–794 (2006) CrossRefGoogle Scholar
  7. 7.
    Gergely, V., Clyne, B.: The FORMGRIP process: foaming of reinforced metals by gas release in precursors. Adv. Eng. Mater. 2, 175–178 (2000) CrossRefGoogle Scholar
  8. 8.
    Bryant, D., et al.: Method for producing foamed aluminum products by use of selected carbonate decomposition products. US Patent application 2006/0243094 A1 Google Scholar
  9. 9.
    Körner, C., Hirschmann, M., Wiehler, H.: Integral foam moulding of light metals. Mater. Trans. 47, 2188–2194 (2006) CrossRefGoogle Scholar
  10. 10.
    Solórzano, E., Reglero, J.A., Rodríguez-Pérez, M.A., de Saja, J.A., Rodríguez-Méndez, M.L.: Improvement of the foaming process for 4045 and 6061 aluminium foams by using the Taguchi methodology. J. Mater. Sci. 42, 7227–7238 (2007) CrossRefGoogle Scholar
  11. 11.
    Matijasevic-Lux, B., Banhart, J., Fiechter, S., Görke, O., Wanderka, N.: Modification of titanium hydride for improved aluminium foam manufacture. Acta Mater. 54, 1887–1900 (2006) Google Scholar
  12. 12.
    von Zeppelin, F., Hirscher, M., Stanzick, H., Banhart, J.: Desorption of hydrogen from blowing agents used for foaming metals. Comput. Sci. Tech. Rep. 63, 2293–2300 (2003) CrossRefGoogle Scholar
  13. 13.
    Wübben, T., Stanzick, H., Banhart, J., Odenbach, S.: Stability of metallic foams studied under microgravity. J. Phys. Condens. Matter 15, S427–S433 (2003) CrossRefGoogle Scholar
  14. 14.
    Helwig, H.M., Banhart, J.: In: Banhart, J., Fleck, N.A., Mortensen, A. (eds.) Cellular Metals and Metal Foaming Technology, pp. 165–168. MIT Press, Cambridge (2003) Google Scholar
  15. 15.
    Linnander, B.: When it’s too hot to touch use infrared thermography. IEEE Circuits Devices Mag. 9, 35–37 (1993) CrossRefGoogle Scholar
  16. 16.
    Speka, M., Matteï, S., Pilloz, M., Ilie, M.: The infrared thermography control of the laser welding of amorphous polymers. NDT E Int. 41, 178–183 (2008) CrossRefGoogle Scholar
  17. 17.
    Brügemann, G., Mahrle, A., Benziger, T.: Comparison of experimental determined and numerical simulated temperature fields for quality assurance at laser beam welding of steels and aluminium alloying,s. NDT E Int. 33, 453–463 (2000) CrossRefGoogle Scholar
  18. 18.
    Haferkamp, H., Bach, F.-W., Niemeyer, M., Viets, R., Weber, J., Breuer, M., Krussel, T.: Tracing thermal process of permanent mould casting. In: Proc. IEEE Int. Symp. Industrial Electronics, vol. 3(3), pp. 1442–1447 (1999) Google Scholar
  19. 19.
    Netzelmann, U., Abuhamad, M., Walle, G.: Thermographic observation of heat transport in solid foams. J. Phys. IV 125, 511–513 (2005) CrossRefGoogle Scholar
  20. 20.
    Maldague, X.P.V.: Theory and Practice of Infrared Technology for Nondestructive Testing. Willey, New York (2001) Google Scholar
  21. 21.
    Reynolds, P.M.: Spectral emissivity of 99.7% aluminium between 200 and 540°C. Br. J. Appl. Phys. 12, 111–114 (1961) CrossRefMathSciNetGoogle Scholar
  22. 22.
    Abramoff, M.D., Magelhaes, P.J., Ram, S.J.: Image processing with imageJ. Biophoton. Int. 11, 36–42 (2004) Google Scholar
  23. 23.
    Tang, Q.-Q., Huang, G.-C.: The research and application of phase change thermography technique. Exp. Meas. Fluid Mech. 17, 15–17 (2003) MathSciNetGoogle Scholar
  24. 24.
    Nagashio, K., Murata, H., Kuribayashi, K.: In situ observation of solidification behavior of Si melt dropped on Si wafer by IR thermography. J. Cryst. Growth 275, e1685–e1690 (2005) CrossRefGoogle Scholar
  25. 25.
    García Moreno, F., Fromme, M., Banhart, J.: Real-time X-ray radioscopy on metallic foams using a compact micro-focus source. Adv. Eng. Mater. 6, 416–420 (2004) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • E. Solórzano
    • 1
    • 2
  • F. Garcia-Moreno
    • 1
    • 3
  • N. Babcsán
    • 4
  • J. Banhart
    • 1
    • 3
  1. 1.Institute of Applied MaterialsHelmholtz-Zentrum BerlinBerlinGermany
  2. 2.CellMat LaboratoryUniversity of ValladolidValladolidSpain
  3. 3.Technical University BerlinBerlinGermany
  4. 4.BayLOGIBay Zoltan Foundation for Applied ResearchMiskolc-TapolcaHungary

Personalised recommendations