Advertisement

Journal of Nondestructive Evaluation

, Volume 28, Issue 1, pp 9–25 | Cite as

Carbon Nanotube Sensing Skins for Spatial Strain and Impact Damage Identification

  • Kenneth J. Loh
  • Tsung-Chin Hou
  • Jerome P. Lynch
  • Nicholas A. Kotov
Article

Abstract

Impact damage, excessive loading, and corrosion have been identified as critical and long-term problems that constantly threaten the integrity and reliability of structural systems (e.g., civil infrastructures, aircrafts, and naval vessels). While a variety of sensing transducers have been proposed for structural health monitoring, most sensors only offer measurement of structural behavior at discrete structural locations. Here, a conformable carbon nanotube-polyelectrolyte sensing skin fabricated via the layer-by-layer technique is proposed to monitor strain and impact damage over spatial areas. Specifically, electrical impedance tomographical (EIT) conductivity mapping techniques are employed to offer two-dimensional damage maps from which damage location and severity can be easily and accurately quantified. This study deposits carbon nanotube-based sensing skins upon metallic structural plates with electrodes installed along the plate boundary. Based on boundary electrical measurements, EIT mapping captures both strain in the underlying substrate as well as damage (e.g., permanent deformation and cracking) introduced using an impact apparatus.

Keywords

Carbon nanotube nanocomposite Electrical impedance tomography Impact damage detection Layer-by-layer Sensing skin Structural health monitoring 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Samsonov, P.: Nondestructive inspection of aging aircraft. Proc. SPIE 2001, 257–261 (1993) CrossRefGoogle Scholar
  2. 2.
    Oberg, J.: The shuttle puzzle [Space Shuttle Columbia disaster]. IEEE Spectrum 40(3), 22–24 (2003) CrossRefGoogle Scholar
  3. 3.
    Njord, J.R., Meyer, M.D.: Critical issues in transportation. Transp. Res. Board Natl. Acad. 1–13 (2006) Google Scholar
  4. 4.
    Doebling, S.W., Farrar, C.R., Prime, M.B.: Summary review of vibration-based damage identification methods. Shock Vib. Dig. 30(2), 91–105 (1998) CrossRefGoogle Scholar
  5. 5.
    Raghavan, A., Cesnik, C.E.S.: Review of guided-wave structural health monitoring. Shock Vib. Dig. 39(2), 91–114 (2007) CrossRefGoogle Scholar
  6. 6.
    Giurgiutiu, V., Cuc, A.: Embedded non-destructive evaluation for structural health monitoring, damage detection, and failure prevention. Shock Vib. Dig. 37(2), 83–105 (2005) CrossRefGoogle Scholar
  7. 7.
    Giurgiutiu, V., Zagrai, A., Bao, J.: Damage identification in aging aircraft structures with piezoelectric wafer active sensors. J. Intell. Mater. Syst. Struct. 15(9-10), 673–687 (2004) CrossRefGoogle Scholar
  8. 8.
    Park, S., Yun, C.-B., Roh, Y., Lee, J.-J.: PZT-based active damage detection techniques for steel bridge components. Smart Mater. Struct. 15(4), 957–966 (2006) CrossRefGoogle Scholar
  9. 9.
    Sohn, H., Park, G., Wait, J.R., Limback, N.P., Farrar, C.R.: Wavelet-based active sensing for delamination detection in composite structures. Smart Mater. Struct. 13(1), 153–160 (2004) CrossRefGoogle Scholar
  10. 10.
    Gogotsi, Y.: (ed.): Nanomaterials Handbook. Taylor & Francis, Boca Raton (2006) Google Scholar
  11. 11.
    Iijima, S.: Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991) CrossRefGoogle Scholar
  12. 12.
    Saito, R., Dresselhaus, G., Dresselhaus, M.S.: Physical Properties of Carbon Nanotubes. Imperial College Press, London (1998) Google Scholar
  13. 13.
    Blighe, F.M., Lyons, P.E., De, S., Blau, W.J., Coleman, J.N.: On the factors controlling the mechanical properties of nanotube films. Carbon 46(1), 41–47 (2008) CrossRefGoogle Scholar
  14. 14.
    Malik, S., Rosner, H., Hennrich, F., Bottcher, A., Kappes, M.M., Beck, T., Auhorn, M.: Failure mechanism of free standing single-walled carbon nanotube thin films under tensile load. Phys. Chem. Chem. Phys. 6(13), 3540–3544 (2004) CrossRefGoogle Scholar
  15. 15.
    Mamedov, A.A., Kotov, N.A., Prato, M., Guldi, D.M., Wicksted, J.P., Hirsch, A.: Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites. Nat. Mater. 1(3), 190–194 (2002) CrossRefGoogle Scholar
  16. 16.
    Loh, K.J., Kim, J., Lynch, J.P., Kam, N.W.S., Kotov, N.A.: Multifunctional layer-by-layer carbon nanotube-polyelectrolyte thin films for strain and corrosion sensing. Smart Mater. Struct. 16(2), 429–438 (2007) CrossRefGoogle Scholar
  17. 17.
    Loh, K.J., Lynch, J.P., Shim, B.S., Kotov, N.A.: Tailoring piezoresistive sensitivity of multilayer carbon nanotube composite strain sensors. J. Intell. Mater. Syst. Struct. 19(7), 747–764 (2008) CrossRefGoogle Scholar
  18. 18.
    Brown, B.H.: Electrical impedance tomography (EIT): a review. J. Med. Eng. Technol. 27(3), 97–108 (2003) CrossRefGoogle Scholar
  19. 19.
    Holder, D.S. (ed.): Electrical Impedance Tomography: Methods, History and Applications. The Institute of Physics, London (2005) Google Scholar
  20. 20.
    Hou, T.-C., Loh, K.J., Lynch, J.P.: Spatial conductivity mapping of carbon nanotube composite thin films by electrical impedance tomography for sensing applications. Nanotechnology 18(31), 315501/315501–315501/315509 (2007) CrossRefGoogle Scholar
  21. 21.
    Vauhkonen, M.: Electrical impedance tomography and prior information. Ph.D. Thesis, Kuopio University, Natural and Environmental Sciences, Kuopio, Finland (1997) Google Scholar
  22. 22.
    Wolfson, R., Pasachoff, J.M.: Physics with Modern Physics for Scientists and Engineers, 2nd edn. HarperCollins College, New York (1995) Google Scholar
  23. 23.
    Borcea, L.: Electrical impedance tomography. Inverse Probl. 18(6), R99–R136 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Cook, R.D., Malkus, D.S., Plesha, M.E., Witt, R.J.: Concept and Applications of Finite Element Analysis, 4th edn. Wiley, New York (2002) Google Scholar
  25. 25.
    Somersalo, E., Cheney, M., Isaacson, D.: Existence and uniqueness for electrode models for electric current computed tomography. SIAM J. Appl. Math. 52(4), 1023–1040 (1992) zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Decher, G., Schlenoff, J.B. (eds.): Multilayer Thin Films: Sequential Assembly of Nanocomposite Materials. Wiley-VCH, Weinheim (2003) Google Scholar
  27. 27.
    Loh, K.J.: Development of multifunctional carbon nanotube nanocomposite sensors for structural health monitoring. Ph.D. Thesis, University of Michigan, Department of Civil and Environmental Engineering, Ann Arbor, MI (2008) Google Scholar
  28. 28.
    Decher, G.: Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277(29), 1232–1237 (1997) CrossRefGoogle Scholar
  29. 29.
    Moore, V.C., Strano, M.S., Haroz, E.H., Hauge, R.H., Smalley, R.E.: Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett. 3(10), 1379–1382 (2003) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Kenneth J. Loh
    • 1
  • Tsung-Chin Hou
    • 2
  • Jerome P. Lynch
    • 2
  • Nicholas A. Kotov
    • 3
  1. 1.Department of Civil and Environmental EngineeringUniversity of CaliforniaDavisUSA
  2. 2.Department of Civil and Environmental EngineeringUniversity of MichiganAnn ArborUSA
  3. 3.Department of Chemical EngineeringUniversity of MichiganAnn ArborUSA

Personalised recommendations