Skip to main content
Log in

Multi-scale Bottleneck Residual Network for Retinal Vessel Segmentation

  • Original Paper
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Precise segmentation of retinal vessels is crucial for the prevention and diagnosis of ophthalmic diseases. In recent years, deep learning has shown outstanding performance in retinal vessel segmentation. Many scholars are dedicated to studying retinal vessel segmentation methods based on color fundus images, but the amount of research works on Scanning Laser Ophthalmoscopy (SLO) images is very scarce. In addition, existing SLO image segmentation methods still have difficulty in balancing accuracy and model parameters. This paper proposes a SLO image segmentation model based on lightweight U-Net architecture called MBRNet, which solves the problems in the current research through Multi-scale Bottleneck Residual (MBR) module and attention mechanism. Concretely speaking, the MBR module expands the receptive field of the model at a relatively low computational cost and retains more detailed information. Attention Gate (AG) module alleviates the disturbance of noise so that the network can concentrate on vascular characteristics. Experimental results on two public SLO datasets demonstrate that by comparison to existing methods, the MBRNet has better segmentation performance with relatively few parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets used in this paper are public datasets. The IOSTAR and RC-SLO for this study can be found at https://www.retinacheck.org.

References

  1. Mookiah, M. R. K., Acharya, U. R., Chua, C. K., Lim, C. M., Ng, E. Y. K., and Laude, A., Computer-aided diagnosis of diabetic retinopathy: a review. Computers in Biology and Medicine 43(12): 2136-2155, 2013. https://doi.org/10.1016/j.compbiomed.2013.10.007

    Article  PubMed  Google Scholar 

  2. Irshad, S., and Akram, M. U., Classification of retinal vessels into arteries and veins for detection of hypertensive retinopathy. In: 2014 Cairo International Biomedical Engineering Conference (CIBEC), pp. 133-136: IEEE, 2014. https://doi.org/10.1109/CIBEC.2014.7020937

  3. Kim, Y. Y., and Yoo, E., Author response: diagnostic ability of retinal arteriolar diameter measurements in glaucoma. Investigative Ophthalmology & Visual Science 57(4): 2167-2167, 2016. https://doi.org/10.1167/iovs.16-19352

    Article  Google Scholar 

  4. Huang, W., Guo, F., and Yan, Y., Retinal vessel segmentation algorithm based on attention mechanism. In: 2022 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), pp. 1-5: IEEE, 2022. https://doi.org/10.1109/DASC/PiCom/CBDCom/Cy55231.2022.9927960

  5. Zhuang, J., LadderNet: multi-path networks based on U-Net for medical image segmentation. arXiv: 1810.07810, 2018. https://doi.org/10.48550/arXiv.1810.07810

  6. Liu, Y., Shen, J., Yang, L., Bian, G., and Yu, H., ResDO-UNet: a deep residual network for accurate retinal vessel segmentation from fundus images. Biomedical Signal Processing and Control 79: 104087, 2023. https://doi.org/10.1016/j.bspc.2022.104087

    Article  Google Scholar 

  7. Ronneberger, O., Fischer, P., and Brox, T., U-Net: convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI), pp. 234-241: Springer, 2015. https://doi.org/10.1007/978-3-319-24574-4 28

  8. Qu, Z., Zhuo, L., Cao, J., Li, X., Yin, H., and Wang, Z., TP-Net: two-path network for retinal vessel segmentation. IEEE Journal of Biomedical and Health Informatics 27(4): 1979-1990, 2023. https://doi.org/10.1109/JBHI.2023.3237704

    Article  Google Scholar 

  9. Huang, K. W., Yang, Y. R., Huang, Z. H., Liu, Y. Y., and Lee, S. H., Retinal vascular image segmentation using improved UNet based on residual module. Bioengineering 10(6): 722, 2023. https://doi.org/10.3390/bioengineering10060722

    Article  PubMed  PubMed Central  Google Scholar 

  10. Shi, Z., Li, Y., Zou, H., and Zhang, X., TCU-Net: transformer embedded in convolutional u-shaped network for retinal vessel segmentation. Sensors 23(10): 4897, 2023. https://doi.org/10.3390/s23104897

    Article  PubMed  PubMed Central  Google Scholar 

  11. Webb, R. H., Hughes, G. W., and Pomerantzeff, O., Flying spot TV ophthalmoscope. Applied Optics 19(17): 2991-2997, 1980. https://doi.org/10.1364/AO.19.002991

    Article  CAS  PubMed  Google Scholar 

  12. Abbasi-Sureshjani, S., Smit-Ockeloen, I., Zhang, J., and Ter Haar Romeny, B., Biologically-inspired supervised vasculature segmentation in SLO retinal fundus images. In: Image Analysis and Recognition: 12th International Conference (ICIAR), pp. 325-334: Springer, 2015. https://doi.org/10.1007/978-3-319-20801-5_35

  13. Zhang, J., Dashtbozorg, B., Bekkers, E., Pluim, J. P., Duits, R., and ter Haar Romeny, B. M., Robust retinal vessel segmentation via locally adaptive derivative frames in orientation scores. IEEE Transactions on Medical Imaging 35(12): 2631-2644, 2016. https://doi.org/10.1109/TMI.2016.2587062

    Article  PubMed  Google Scholar 

  14. Zhao, Y., Zheng, Y., Liu, Y., Zhao, Y., Luo, L., Yang, S., Na, T., Wang, Y., and Liu, J., Automatic 2-D/3-D vessel enhancement in multiple modality images using a weighted symmetry filter. IEEE Transactions on Medical Imaging 37(2): 438-450, 2017. https://doi.org/10.1109/TMI.2017.2756073

    Article  PubMed  Google Scholar 

  15. Srinidhi, C. L., Aparna, P., and Rajan, J., A visual attention guided unsupervised feature learning for robust vessel delineation in retinal images. Biomedical Signal Processing and Control 44: 110-126, 2018. https://doi.org/10.1016/j.bspc.2018.04.016

    Article  Google Scholar 

  16. Wang, D., Haytham, A., Pottenburgh, J., Saeedi, O., and Tao, Y., Hard attention net for automatic retinal vessel segmentation. IEEE Journal of Biomedical and Health Informatics 24(12): 3384-3396, 2020. https://doi.org/10.1109/JBHI.2020.3002985

    Article  PubMed  Google Scholar 

  17. Li, X., Jiang, Y., Li, M., and Yin, S., Lightweight attention convolutional neural network for retinal vessel image segmentation. IEEE Transactions on Industrial Informatics 17(3): 1958-1967, 2020. https://doi.org/10.1109/TII.2020.2993842

    Article  Google Scholar 

  18. Guo, C., Szemenyei, M., Yi, Y., Xue, Y., Zhou, W., and Li, Y., Dense residual network for retinal vessel segmentation. In: ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1374-1378: IEEE, 2020. https://doi.org/10.1109/ICASSP40776.2020.9054290

  19. Guo, S., CSGNet: cascade semantic guided net for retinal vessel segmentation. Biomedical Signal Processing and Control 78: 103930, 2022. https://doi.org/10.1016/j.bspc.2022.103930

    Article  Google Scholar 

  20. He, K., Zhang, X., Ren, S., and Sun, J., Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770-778: IEEE, 2016. https://doi.org/10.1109/CVPR.2016.90

  21. Laibacher, T., Weyde, T., and Jalali, S., M2U-Net: effective and efficient retinal vessel segmentation for real-world applications. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 115-124: IEEE, 2019. https://doi.org/10.1109/CVPRW.2019.00020

  22. Aurangzeb, K., Haider, S. I., and Alhussein, M., Retinal vessel segmentation based on the Anam-Net model. Elektronika ir Elektrotechnika 28(3): 54-64, 2022. https://doi.org/10.5755/j02.eie.30594

    Article  Google Scholar 

  23. Haider, S. I., Aurangzeb, K., and Alhussein, M., Modified Anam-Net based lightweight deep learning model for retinal vessel segmentation. Computers, Materials & Continua 73(1):1501-1526. https://doi.org/10.32604/cmc.2022.025479

  24. Hu, J., Shen, L., and Sun, G., Squeeze-and-excitation networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7132-7141: IEEE, 2018. https://doi.org/10.1109/CVPR.2018.00745

  25. Wang, J., Li, X., Lv, P., and Shi, C., SERR-U-Net: squeeze-and-excitation residual and recurrent block-based U-Net for automatic vessel segmentation in retinal image. Computational and Mathematical Methods in Medicine 2021: 5976097, 2021. https://doi.org/10.1155/2021/5976097

    Article  PubMed  PubMed Central  Google Scholar 

  26. Xia, H., Wu, L., Lan, Y., Li, H., and Song, S., HRNet: a hierarchical recurrent convolution neural network for retinal vessel segmentation. Multimedia Tools and Applications 81(28): 39829-39851, 2022. https://doi.org/10.1007/s11042-022-12696-4

    Article  Google Scholar 

  27. Oktay, O., Schlemper, J., Folgoc, L. L., Lee, M., Heinrich, M., Misawa, K., Mori, K., McDonagh, S., Hammerla, N. Y., Kainz, B., and et al., Attention U-Net: learning where to look for the pancreas. arXiv: 1804.03999, 2018. https://doi.org/10.48550/arXiv.1804.03999

  28. Fu, X., and Zhao, N., AGC-UNet: a global context feature fusion method based on u-net for retinal vessel segmentation. In: 2022 IEEE 2nd International Conference on Information Communication and Software Engineering (ICICSE), pp. 94-99: IEEE, 2022. https://doi.org/10.1109/ICICSE55337.2022.9828894

  29. Tang, X., Zhong, B., Peng, J., Hao, B., and Li, J., Multi-scale channel importance sorting and spatial attention mechanism for retinal vessels segmentation. Applied Soft Computing 93: 106353, 2020. https://doi.org/10.1016/j.asoc.2020.106353

    Article  Google Scholar 

  30. Hu, K., Zhang, D., Xia, M., Qian, M., and Chen, B., LCDNet: light-weighted cloud detection network for high-resolution remote sensing images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 15: 4809-4823, 2022. https://doi.org/10.1109/JSTARS.2022.3181303

    Article  Google Scholar 

  31. Tao, X., Dang, H., Zhou, X., Xu, X., and Xiong, D., A lightweight network for accurate coronary artery segmentation using X-Ray angiograms. Frontiers in Public Health 10: 892418, 2022. https://doi.org/10.3389/fpubh.2022.892418

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ding, X., Guo, Y., Ding, G., and Han, J., ACNet: strengthening the kernel skeletons for powerful CNN via asymmetric convolution blocks. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 1911-1920: IEEE, 2019. https://doi.org/10.1109/ICCV.2019.00200

  33. Chollet, F., Xception: deep learning with depthwise separable convolutions. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1800-1807: IEEE, 2017. https://doi.org/10.1109/CVPR.2017.195

  34. Alom, M. Z., Hasan, M., Yakopcic, C., Taha, T. M., and Asari, V. K., Recurrent residual convolutional neural network based on U-Net (R2U-Net) for medical image segmentation. arXiv: 1802.06955, 2018. https://doi.org/10.48550/arXiv.1802.06955

  35. Li, X., Chen, H., Qi, X., Dou, Q., Fu, C. W., and Heng, P. A., H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes. IEEE Transactions on Medical Imaging 37(12): 2663-2674, 2018. https://doi.org/10.1109/TMI.2018.2845918

    Article  PubMed  Google Scholar 

  36. Wang, Q., Wu, B., Zhu, P., Li, P., Zuo, W., and Hu, Q. ECA-Net: efficient channel attention for deep convolutional neural networks. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11531-11539: IEEE, 2020. https://doi.org/10.1109/CVPR42600.2020.01155

Download references

Funding

This research was funded by Project supported by the Education Department of Hainan Province, (Grant No. Hnjg2021ZD-10).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Peipei Li; Methodology: Peipei Li; Formal analysis and investigation: Peipei Li; Writing - original draft preparation: Peipei Li, Zhao Qiu, Yuefu Zhan; Writing - review and editing: Zhao Qiu, Yuefu Zhan, Huajing Chen, Sheng Yuan; Funding acquisition: Zhao Qiu; Resources: Zhao Qiu; Supervision: Zhao Qiu. All authors contributed to the article and approved the submitted version.

Corresponding authors

Correspondence to Zhao Qiu or Yuefu Zhan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Not applicable.

Conflicts of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Qiu, Z., Zhan, Y. et al. Multi-scale Bottleneck Residual Network for Retinal Vessel Segmentation. J Med Syst 47, 102 (2023). https://doi.org/10.1007/s10916-023-01992-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-023-01992-7

Keywords

Navigation