Skip to main content

Respiratory Sound Based Classification of Chronic Obstructive Pulmonary Disease: a Risk Stratification Approach in Machine Learning Paradigm

Abstract

This article investigates the classification of normal and COPD subjects on the basis of respiratory sound analysis using machine learning techniques. Thirty COPD and 25 healthy subject data are recorded. Total of 39 lung sound features and 3 spirometry features are extracted and evaluated. Various parametric and nonparametric tests are conducted to evaluate the relevance of extracted features. Classifiers such as support vector machine (SVM), k-nearest neighbor (KNN), logistic regression (LR), decision tree and discriminant analysis (DA) are used to categorize normal and COPD breath sounds. Classification based on spirometry parameters as well as respiratory sound parameters are assessed. Maximum classification accuracy of 83.6% is achieved by the SVM classifier while using the most relevant lung sound parameters i.e. median frequency and linear predictive coefficients. Further, SVM classifier and LR classifier achieved classification accuracy of 100% when relevant lung sound parameters, i.e. median frequency and linear predictive coefficient are combined with the spirometry parameters, i.e. forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV1). It is concluded that combining lung sound based features with spirometry data can improve the accuracy of COPD diagnosis and hence the clinician’s performance in routine clinical practice. The proposed approach is of great significance in a clinical scenario wherein it can be used to assist clinicians for automated COPD diagnosis. A complete handheld medical system can be developed in the future incorporating lung sounds for COPD diagnosis using machine learning techniques.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Laniado-Laborin, R., Smoking and chronic obstructive pulmonary disease (COPD). Parallel epidemics of the 21 century. Int. J. Environ. Res. Public Health 6(1):209–224, 2009.

    CAS  Article  Google Scholar 

  2. The top 10 causes of death, World Health Organization. http://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death. Accessed on 4 Oct. 2018.

  3. May, S. M., and Li, J. T., Burden of chronic obstructive pulmonary disease: Healthcare costs and beyond. Allergy Asthma Proc. 36(1):4–10, 2015.

    Article  Google Scholar 

  4. Viniol, C., and Vogelmeier, C. F., Exacerbations of COPD. Eur. Respir. Rev. 27:170103, 2018.

    Article  Google Scholar 

  5. Hui, S., How, C. H., and Tee, A., Does this patient really have chronic obstructive pulmonary disease? Singap. Med. J. 56(4):194–196, 2015.

    Article  Google Scholar 

  6. Shapiro, S. D., and Ingenito, E. P., The pathogenesis of chronic obstructive pulmonary disease. Am. J. Respir. Cell Mol. Biol. 32(5):367–372, 2005.

    CAS  Article  Google Scholar 

  7. Williamson, J. P. et al., Elastic properties of the central airways in obstructive lung diseases measured using anatomical optical coherence tomography. Am. J. Respir. Crit. Care Med. 183(5):612–619, 2011.

    Article  Google Scholar 

  8. Lee, S. J., Kim, S. W., Kong, K. A., Ryu, Y. J., Lee, J. H., and Chang, J. H., Risk factors for chronic obstructive pulmonary disease among never-smokers in Korea. Int. J. Chron. Obstruct. Pulmon. Dis. 10:497–506, 2015. https://doi.org/10.2147/COPD.S77662.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Koul, P. A., Chronic obstructive pulmonary disease: Indian guidelines and the road ahead. Lung India 30(3):175–177, 2013.

    Article  Google Scholar 

  10. Andreeva, E., Pokhaznikova, M., Lebedev, A., Moiseeva, I., Kuznetsova, O., and Degryse, J. M., Spirometry is not enough to diagnose COPD in epidemiological studies: A follow-up study. NPJ Prim. Care Respir. Med. 27:62, 2017.

    Article  Google Scholar 

  11. Lowery, E. M., Brubaker, A. L., Kuhlmann, E., and Kovacs, E. J., The aging lung. Clin. Interv. Aging 8:1489–1496, 2013.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Johns, D. P., Walters, J. A., and Walters, E. H., Diagnosis and early detection of COPD using spirometry. J. Thorac. Dis. 6(11):1557–1569, 2014.

    PubMed  PubMed Central  Google Scholar 

  13. Washko, G. R., Diagnostic imaging in COPD. Semin. Respir. Crit. Care Med. 31(3):276–285, 2010.

    Article  Google Scholar 

  14. Guarascio, A. J., Ray, S. M., Finch, C. K., and Self, T. H., The clinical and economic burden of chronic obstructive pulmonary disease in the USA. Clinicoecon Outcomes Res. 5:235–245, 2013. https://doi.org/10.2147/CEOR.S34321.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Reichert, S., Gass, R., Brandt, C., and Andres, E., Analysis of respiratory sounds: State of the art. Clin. Med. Circ. Respirat. Pulm. Med. 2:45–58, 2008.

    PubMed  PubMed Central  Google Scholar 

  16. Melbye, H., Garcia-Marcos, L., Brand, P., Everard, M., Priftis, K., and Pasterkamp, H., Wheezes, crackles and rhonchi: Simplifying description of lung sounds increases the agreement on their classification: A study of 12 physicians’ classification of lung sounds from video recordings. BMJ Open Respir. Res. 3(1):e000136, 2016. https://doi.org/10.1136/bmjresp-2016-000136.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sarkar, M., Madabhavi, I., Niranjan, N., and Dogra, M., Auscultation of the respiratory system. Ann Thorac. Med. 10(3):158–168, 2015.

    Article  Google Scholar 

  18. Malmberg, L. P., Pesu, L., and Sovijarvi, A. R. A., Significant differences in flow standardised breath sound spectra in patients with chronic obstructive pulmonary disease, stable asthma, and healthy lungs. Thorax 50:1285–1291, 1995.

    CAS  Article  Google Scholar 

  19. Sanchez Morillo, D., Astorga Moreno, S., Fernandez Granero, M. A., and Leon Jimenez, A., Computerized analysis of respiratory sounds during COPD exacerbations. Comput. Biol. Med. 43:914–921, 2013.

    Article  Google Scholar 

  20. Mineshita, M., Kida, H., Handa, H., Nishine, H., Furuya, N., Nobuyama, S., Inoue, T., Matsuoka, S., and Miyazawa, T., The correlation between lung sound distribution and pulmonary function in COPD patients. PLoS ONE 9(9):e107506, 2014.

    Article  Google Scholar 

  21. Bennett, S., Bruton, A., Barney, A., Havelock, T., and Bennett, M., The relationship between crackle characteristics and airway morphology in COPD. Respir. Care 60(3):412–421, 2015.

    Article  Google Scholar 

  22. Poreva, A. S., Karplyuk, Y. S., Makarenkova, A. A., and Makarenkov, A. P., Detection of COPD’s auscultative symptoms using higher order statistics in the analysis of respiratory sounds. Radioelectron. Commun. Syst. 59(2):83–88, 2016.

    Article  Google Scholar 

  23. Ishimatsu, A., Nakano, H., Nogami, H., Yoshida, M., Iwanaga, T., and Hoshino, T., Breath sound intensity during tidal breathing in COPD patients. Intern. Med. 54:1183–1191, 2015. https://doi.org/10.2169/internalmedicine.54.3161.

    Article  PubMed  Google Scholar 

  24. Jacome, C., and Marques, A., Computerized respiratory sounds are a reliable marker in subjects with COPD. Respir. Care 60(9):1264–1275, 2015.

    Article  Google Scholar 

  25. Jacome, C., Oliveira, A., and Marques, A., Computerized respiratory sounds: A comparison between patients with stable and exacerbated COPD. Clin. Respir. J. 11(5):612–620, 2017. https://doi.org/10.1111/crj.12392.

    Article  PubMed  Google Scholar 

  26. Mondal, A., Bhattacharya, P., and Saha, G., Detection of lungs status using morphological complexities of respiratory sounds. Sci. World J. 182938:1–9, 2014.

    Article  Google Scholar 

  27. Haider, N. S., Periyasamy, R., Joshi, D., and Singh, B. K., Savitzky-Golay filter for denoising lung sound. Braz. Arch. Biol. Technol. 61:e18180203, 2018.

    Article  Google Scholar 

  28. DeLong, E. R., DeLong, D. M., and Clarke-Pearson, D. L., Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 44(3):837–845, 1988.

    CAS  Article  Google Scholar 

  29. Cortes, C., and Vapnik, V., Support-vector networks. Mach. Learn. 20(3):273–297, 1995. https://doi.org/10.1007/BF00994018.

    Article  Google Scholar 

  30. Duda, R. O., Hart, P. E., and Stork, D. G., Pattern classification. Wiley, New York, 2000. https://doi.org/10.1038/npp.2011.9.

    Book  Google Scholar 

  31. Subashini, T. S., Ramalingam, V., and Palanivel, S., Breast mass classification based on cytological patterns using RBFNN and SVM. Expert Syst. Appl. 36(3):5284–5290, 2009. https://doi.org/10.1016/j.eswa.2008.06.127.

    Article  Google Scholar 

  32. Boser, B. E., Guyon, I. M., and Vapnik, V. N., A training algorithm for optimal margin classifiers. COLT ‘92. Proceedings of the Fifth Annual Workshop on Computational Learning Theory. 144–152, 1992. https://doi.org/10.1145/130385.130401

  33. Tharwat, A., Gaber, T., Ibrahim, A., and Hassanien, A. E., Linear discriminant analysis: A detailed tutorial. AI Commun. 30(2):169–190, 2017. https://doi.org/10.3233/AIC-170729.

    Article  Google Scholar 

  34. Dixon, S. J., and Brereton, R. G., Comparison of performance of five common classifiers represented as boundary methods: Euclidean distance to centroids, linear discriminant analysis, quadratic discriminant analysis, learning vector quantization and support vector machines, as dependent on data structure. Chemom. Intell. Lab. Syst. 95(1):1–17, 2009.

    CAS  Article  Google Scholar 

  35. Brownlee, J., Logistic regression for machine learning. 2016. https://machinelearningmastery.com/logistic-regression-for-machine-learning/. Accessed on 28 Feb 2019.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bikesh Kumar Singh.

Ethics declarations

Conflict of interest

Author Nishi Shahnaj Haider, declares that she has no conflict of interest. Author Bikesh Kumar Singh declares that he has no conflict of interest. Author R. Periyasamy, declares that he has no conflict of interest. Author Ajoy K. Behera, declares that he has no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Image & Signal Processing

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Haider, N.S., Singh, B.K., Periyasamy, R. et al. Respiratory Sound Based Classification of Chronic Obstructive Pulmonary Disease: a Risk Stratification Approach in Machine Learning Paradigm. J Med Syst 43, 255 (2019). https://doi.org/10.1007/s10916-019-1388-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-019-1388-0

Keywords

  • Chronic obstructive pulmonary disease diagnosis
  • Lung sound
  • Feature extraction
  • Spirometry
  • Machine learning
  • Risk stratification