An Efficient Melanoma Diagnosis Approach Using Integrated HMF Multi-Atlas Map Based Segmentation

  • D. Roja RamaniEmail author
  • S. Siva Ranjani
Image & Signal Processing
Part of the following topical collections:
  1. Wearable Computing Techniques for Smart Health


Melanoma is a life threading disease when it grows outside the corium layer of the skin. Mortality rates of the Melanoma cases are maximum among the skin cancer patients. The cost required for the treatment of advanced melanoma cases is very high and the survival rate is low. Numerous computerized dermoscopy systems are developed based on the combination of shape, texture and color features to facilitate early diagnosis of melanoma. The availability and cost of the dermoscopic imaging system is still an issue. To mitigate this issue, this paper presented an integrated segmentation and Third Dimensional (3D) feature extraction approach for the accurate diagnosis of melanoma. A multi-atlas method is applied for the image segmentation. The patch-based label fusion model is expressed in a Bayesian framework to improve the segmentation accuracy. A depth map is obtained from the Two-dimensional (2D) dermoscopic image for reconstructing the 3D skin lesion represented as structure tensors. The 3D shape features including the relative depth features are obtained. Streaks are the significant morphological terms of the melanoma in the radial growth phase. The proposed method yields maximum segmentation accuracy, sensibility, specificity and minimum cost function than the existing segmentation technique and classifier.


Depth features Lesion color texture (LCT)–Streax (STR) Multi-atlas map Melanoma diagnosis Patch-based label fusion 


Compliance with Ethical Standards

Conflict of Interest

The authors have no conflict of interests and the paper has not been submitted to any other Journals.

Research Involving Human Participants and/or Animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

It is not required as the dataset is taken online databases.


  1. 1.
    Menzies, S. W., Ingvar, C., Crotty, K. A., and McCarthy, W. H., Frequency and morphologic characteristics of invasive melanomas lacking specific surface microscopic features. Arch. Dermatol. 132:1178–1182, 1996.CrossRefGoogle Scholar
  2. 2.
    Argenziano, G., Fabbrocini, G., Carli, P., De Giorgi, V., Sammarco, E., and Delfino, M., Epiluminescence microscopy for the diagnosis of doubtful melanocytic skin lesions: Comparison of the ABCD rule of dermatoscopy and a new 7-point checklist based on pattern analysis. Arch. Dermatol. 134:1563–1570, 1998.CrossRefGoogle Scholar
  3. 3.
    Stolz, W., ABCD rule of dermatoscopy: A new practical method for early recognition of malignant melanoma. Eur. J. Dermatol. 4:521–527, 1994.Google Scholar
  4. 4.
    Blum, A., Rassner, G., and Garbe, C., Modified ABC-point list of dermoscopy: A simplified and highly accurate dermoscopic algorithm for the diagnosis of cutaneous melanocytic lesions. J. Am. Acad. Dermatol. 48:672–678, 2003.CrossRefGoogle Scholar
  5. 5.
    Barata, C., Ruela, M., Francisco, M., Mendonça, T., and Marques, J. S., Two systems for the detection of melanomas in dermoscopy images using texture and color features. IEEE Syst. J. 8:965–979, 2014.CrossRefGoogle Scholar
  6. 6.
    Pereyra, M. A., Dobigeon, N., Batatia, H., and Tourneret, J.-Y., Segmentation of skin lesions in 2D and 3D ultrasound images using a spatially coherent generalized Rayleigh mixture model. IEEE Trans. Med. Imaging 31:1509–1520, 2012.CrossRefGoogle Scholar
  7. 7.
    Steiner, A., Binder, M., Schemper, M., Wolff, K., and Pehamberger, H., Statistical evaluation of epiluminescence microscopy criteria for melanocytic pigmented skin lesions. J. Am. Acad. Dermatol. 29:581–588, 1993.CrossRefGoogle Scholar
  8. 8.
    Sadeghi, M., Lee, T. K., McLean, D., Lui, H., and Atkins, M. S., Detection and analysis of irregular streaks in dermoscopic images of skin lesions. IEEE Trans. Med. Imaging 32:849–861, 2013.CrossRefGoogle Scholar
  9. 9.
    Heckemann, R. A., Hajnal, J. V., Aljabar, P., Rueckert, D., and Hammers, A., Automatic anatomical brain MRI segmentation combining label propagation and decision fusion. NeuroImage 33:115–126, 2006.CrossRefGoogle Scholar
  10. 10.
    Rohlfing, T., Russakoff, D. B., and Maurer, C. R., Performance-based classifier combination in atlas-based image segmentation using expectation-maximization parameter estimation. IEEE Trans. Med. Imaging 23:983–994, 2004.CrossRefGoogle Scholar
  11. 11.
    Rohlfing, T., Brandt, R., Menzel, R., and Maurer, Jr., C. R., Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains. NeuroImage 21:1428–1442, 2004.CrossRefGoogle Scholar
  12. 12.
    Svarer, C., Madsen, K., Hasselbalch, S. G., Pinborg, L. H., Haugbøl, S., Frøkjær, V. G. et al., MR-based automatic delineation of volumes of interest in human brain PET images using probability maps. Neuroimage 24:969–979, 2005.CrossRefGoogle Scholar
  13. 13.
    Abuzaghleh, O., Barkana, B. D., and Faezipour, M., Noninvasive real-time automated skin lesion analysis system for melanoma early detection and prevention. IEEE J. Trans. Eng. Health Med. 3:1–12, 2015.CrossRefGoogle Scholar
  14. 14.
    Glaister, J., Wong, A., and Clausi, D. A., Segmentation of skin lesions from digital images using joint statistical texture distinctiveness. IEEE Trans. Biomed. Eng. 61:1220–1230, 2014.CrossRefGoogle Scholar
  15. 15.
    M. H. Jafari, N. Karimi, E. Nasr-Esfahani, S. Samavi, S. M. R. Soroushmehr, K. Ward, et al., "Skin lesion segmentation in clinical images using deep learning," in Pattern Recognition (ICPR), 2016 23rd International Conference on, 2016, pp. 337-342.Google Scholar
  16. 16.
    Peruch, F., Bogo, F., Bonazza, M., Cappelleri, V.-M., and Peserico, E., Simpler, faster, more accurate melanocytic lesion segmentation through meds. IEEE Trans. Biomed. Eng. 61:557–565, 2014.CrossRefGoogle Scholar
  17. 17.
    Ma, Z., and Tavares, J. M. R., A review of the quantification and classification of pigmented skin lesions: From dedicated to hand-held devices. J. Med. Syst. 39:177, 2015.CrossRefGoogle Scholar
  18. 18.
    Navarro, F., Escudero-Vinolo, M., and Bescos, J., Accurate segmentation and registration of skin lesion images to evaluate lesion change. IEEE J. Biomed. Health Inform., 2018.Google Scholar
  19. 19.
    Dhawan, A. P., Gordon, R., and Rangayyan, R. M., Nevoscopy: Three-dimensional computed tomography of nevi and melanomas in situ by transillumination. IEEE Trans. Med. Imaging 3:54–61, 1984.CrossRefGoogle Scholar
  20. 20.
    Tittmann, B. R., Miyasaka, C., Maeva, E., and Shum, D., Fine mapping of tissue properties on excised samples of melanoma and skin without the need for histological staining. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60:320–331, 2013.CrossRefGoogle Scholar
  21. 21.
    Vogt, M., and Ermert, H., In vivo ultrasound biomicroscopy of skin: Spectral system characteristics and inverse filtering optimization. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 2007.CrossRefGoogle Scholar
  22. 22.
    Kaur, G., and Joshi, K., Automatic detection and segmentation of skin melanoma images-an introduction. Int. J. Emerg. Res. Manag. Technol. ISSN:2278–9359, 2015.Google Scholar
  23. 23.
    Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M. et al., Dermatologist-level classification of skin cancer with deep neural networks. Nature 542:115, 2017.CrossRefGoogle Scholar
  24. 24.
    Menzies, S., Ingvar, C., and McCarthy, W., A sensitivity and specificity analysis of the surface microscopy features of invasive melanoma. Melanoma Res. 6:55–62, 1996.CrossRefGoogle Scholar
  25. 25.
    Kasmi, R., Mokrani, K., Rader, R., Cole, J., and Stoecker, W., Biologically inspired skin lesion segmentation using a geodesic active contour technique. Skin Res. Technol. 22:208–222, 2016.CrossRefGoogle Scholar
  26. 26.
    Pennisi, A., Bloisi, D. D., Nardi, D., Giampetruzzi, A. R., Mondino, C., and Facchiano, A., Skin lesion image segmentation using Delaunay triangulation for melanoma detection. Comput. Med. Imaging Graph. 52:89–103, 2016.CrossRefGoogle Scholar
  27. 27.
    N. Mittal, S. Tanwar, and S. K. Khatri, "Identification & enhancement of different skin lesion images by segmentation techniques," in Reliability, Infocom Technologies and Optimization (Trends and Future Directions)(ICRITO), 2017 6th International Conference on, 2017, pp. 609-614.Google Scholar
  28. 28.
    B. Patel, K. Dhayal, S. Roy, and R. Shah, "Computerized skin cancer lesion identification using the combination of clustering and entropy," in Big Data Analytics and Computational Intelligence (ICBDAC), 2017 International Conference on, 2017, pp. 46–51.Google Scholar
  29. 29.
    Ma, Z., and Tavares, J. M. R., A novel approach to segment skin lesions in dermoscopic images based on a deformable model. IEEE J. Biomed. Health Inform. 20:615–623, 2016.CrossRefGoogle Scholar
  30. 30.
    L. Bi, J. Kim, E. Ahn, D. Feng, and M. Fulham, "Automated skin lesion segmentation via image-wise supervised learning and multi-scale superpixel based cellular automata," in Biomedical Imaging (ISBI), 2016 IEEE 13th International Symposium on, 2016, pp. 1059-1062.Google Scholar
  31. 31.
    A. A. A. Al-abayechi, H. A. Jalab, R. W. Ibrahim, and A. M. Hasan, "Image Enhancement Based on Fractional Poisson for Segmentation of Skin Lesions Using the Watershed Transform," in International Visual Informatics Conference, 2017, pp. 249-259.Google Scholar
  32. 32.
    S. Ross-Howe and H. R. Tizhoosh, "The Effects of Image Pre-and Post-Processing, Wavelet Decomposition, and Local Binary Patterns on U-Nets for Skin Lesion Segmentation," in 2018 International Joint Conference on Neural Networks (IJCNN), 2018, pp. 1-8.Google Scholar
  33. 33.
    Li, Y., and Shen, L., Skin lesion analysis towards melanoma detection using deep learning network. Sensors 18:556, 2018.CrossRefGoogle Scholar
  34. 34.
    N. C. Codella, D. Gutman, M. E. Celebi, B. Helba, M. A. Marchetti, S. W. Dusza, et al., "Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic)," in 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), 2018, pp. 168-172.Google Scholar
  35. 35.
    A. R. Jadhav, A. G. Ghontale, and V. K. Shrivastava, "Segmentation and Border Detection of Melanoma Lesions Using Convolutional Neural Network and SVM," in Computational Intelligence: Theories, Applications and Future Directions-Volume I, ed: Springer, 2019, pp. 97-108.Google Scholar
  36. 36.
    Nida, N., Irtaza, A., Javed, A., Yousaf, M. H., and Mahmood, M. T., Melanoma lesion detection and segmentation using deep region based convolutional neural network and fuzzy C-means clustering. Int. J. Med. Inform., 2019.Google Scholar
  37. 37.
    Nasir, M., Attique Khan, M., Sharif, M., Lali, I. U., Saba, T., and Iqbal, T., An improved strategy for skin lesion detection and classification using uniform segmentation and feature selection based approach. Microsc. Res. Tech. 81:528–543, 2018.CrossRefGoogle Scholar
  38. 38.
    J. P. Ebenezer and J. C. Rajapakse, "Automatic segmentation of skin lesions using deep learning," arXiv preprint arXiv:1807.04893, 2018.Google Scholar
  39. 39.
    Chambolle, A., An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20:89–97, 2004.CrossRefGoogle Scholar
  40. 40.
    Rajchl, M., Yuan, J., White, J. A., Ukwatta, E., Stirrat, J., Nambakhsh, C. M. et al., Interactive hierarchical-flow segmentation of scar tissue from late-enhancement cardiac MR images. IEEE Trans. Med. Imaging 33:159–172, 2014.CrossRefGoogle Scholar
  41. 41.
    Rousseau, F., Habas, P. A., and Studholme, C., A supervised patch-based approach for human brain labeling. IEEE Trans. Med. Imaging 30:1852–1862, 2011.CrossRefGoogle Scholar
  42. 42.
    Zhuo, S., and Sim, T., Defocus map estimation from a single image. Pattern Recogn. 44:1852–1858, 2011.CrossRefGoogle Scholar
  43. 43.
    A. Levin, D. Lischinski, Y. Weiss, "A closed form solution to natural image matting," in Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, 2006, pp. 61-68.Google Scholar
  44. 44.
    P. Risholm, E. Samset, and W. Wells, "Bayesian estimation of deformation and elastic parameters in non-rigid registration," in International Workshop on Biomedical Image Registration, 2010, pp. 104-115.CrossRefGoogle Scholar
  45. 45.
    P. Risholm, S. Pieper, E. Samset, and W. M. Wells, "Summarizing and visualizing uncertainty in non-rigid registration," in International Conference on Medical Image Computing and Computer-Assisted Intervention, 2010, pp. 554-561.CrossRefGoogle Scholar
  46. 46.
    Simpson, I. J., Schnabel, J. A., Groves, A. R., Andersson, J. L., and Woolrich, M. W., Probabilistic inference of regularisation in non-rigid registration. NeuroImage 59:2438–2451, 2012.CrossRefGoogle Scholar
  47. 47.
    Simpson, I. J., Woolrich, M. W., Andersson, J. R., Groves, A. R., and Schnabel, J., Ensemble learning incorporating uncertain registration. IEEE Trans. Med. Imaging 32:748–756, 2013.CrossRefGoogle Scholar
  48. 48.
    W. Bai, W. Shi, D. P. O'Regan, T. Tong, H. Wang, S. Jamil-Copley, et al., "A probabilistic patch-based label fusion model for multi-atlas segmentation with registration refinement: Application to cardiac MR images," IEEE Trans. Med. Imaging, vol. 32, pp. 1302-1315, 2013.Google Scholar
  49. 49.
    Coupé, P., Manjón, J. V., Fonov, V., Pruessner, J., Robles, M., and Collins, D. L., Patch-based segmentation using expert priors: Application to hippocampus and ventricle segmentation. NeuroImage 54:940–954, 2011.CrossRefGoogle Scholar
  50. 50.
    Senthilselvi, A., and Sukumar, R., Removal of salt and pepper noise from images using hybrid filter (HF) and fuzzy logic noise detector (FLND). J. Concur. Comput. Pract. Exp., 2018. Scholar
  51. 51.
    Senthilselvi, A., and Sukumar, R., A survey on image restoration technique. Int. J. Emerg. Eng. Res. Technol. 2(8):123–128, 2014.Google Scholar
  52. 52.
    Flusser, J., and Suk, T., Pattern recognition by affine moment invariants. Pattern Recogn. 26:167–174, 1993.CrossRefGoogle Scholar
  53. 53.
    Hu, M.-K., Visual pattern recognition by moment invariants. IRE Trans. Inform. Theory 8:179–187, 1962.Google Scholar
  54. 54.
    Sadeghi, M., Razmara, M., Lee, T. K., and Atkins, M. S., A novel method for detection of pigment network in dermoscopic images using graphs. Comput. Med. Imaging Graph. 35:137–143, 2011.CrossRefGoogle Scholar
  55. 55.
    C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, "Rethinking the inception architecture for computer vision," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 2818-2826.Google Scholar
  56. 56.
    Satheesha, T., Satyanarayana, D., Prasad, M. G., and Dhruve, K. D., Melanoma is skin deep: A 3D reconstruction technique for computerized dermoscopic skin lesion classification. IEEE J Trans. Eng. Health Med. 5:1–17, 2017.CrossRefGoogle Scholar
  57. 57.
    T. Mendonça, P. M. Ferreira, J. S. Marques, A. R. Marcal, and J. Rozeira, "PH 2-A dermoscopic image database for research and benchmarking," in Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE, 2013, pp. 5437-5440.Google Scholar
  58. 58.
    A. A. Marghoob, R. P. Braun, and A. W. Kopf, Interactive CD-ROM of Dermoscopy: Informa Healthcare, 2007.Google Scholar
  59. 59.
    G. Argenziano, H. Soyer, V. De Giorgi, D. Piccolo, P. Carli, and M. Delfino, "Interactive atlas of dermoscopy (Book and CD-ROM)," 2000.Google Scholar
  60. 60.
    H. Soyer, G. Argenziano, S. Chimenti, S. Menzies, H. Pehamberger, H. Rabinovitz, et al., "Dermoscopy of pigmented skins lesions. An Atlas based on the Consensus Net Meeting on Dermoscopy 2000," 2001.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Information TechnologySethu Institute of TechnologyVirudhunagarIndia
  2. 2.Department of Computer Science and EngineeringSethu Institute of TechnologyVirudhunagarIndia

Personalised recommendations