Advertisement

A Generic Construction of Integrated Secure-Channel Free PEKS and PKE and its Application to EMRs in Cloud Storage

  • Tatsuya SuzukiEmail author
  • Keita Emura
  • Toshihiro Ohigashi
Systems-Level Quality Improvement
  • 71 Downloads
Part of the following topical collections:
  1. Systems-Level Quality Improvement

Abstract

To provide a search functionality for encrypted data, public key encryption with keyword search (PEKS) has been widely recognized. In actual usage, a PEKS scheme should be employed with a PKE scheme since PEKS itself does not support the decryption of data. Since a naive composition of a PEKS ciphertext and a PKE ciphertext does not provide CCA security, several attempts have been made to integrate PEKS and PKE in a joint CCA manner (PEKS/PKE for short). In this paper, we further extend these works by integrating secure-channel free PEKS (SCF-PEKS) and PKE, which we call SCF-PEKS/PKE, where no secure channel is required to send trapdoors. We give a formal security definition of SCF-PEKS/PKE in a joint CCA manner, and propose a generic construction of SCF-PEKS/PKE based on anonymous identity-based encryption, tag-based encryption, and one-time signature. We also strengthen the current consistency definition according to the secure-channel free property, and show that our construction is strongly consistent if the underlying IBE provides unrestricted strong collision-freeness which is defined in this paper. We also show that such an IBE scheme can be constructed by employing the Abdalla et al. transformations (TCC 2010/J. Cryptology 2018). Finally, as an application of SCF-PEKS/PKE, we strengthen the security of encrypted Electronic Medical Record (EMR) system proposed by Guo and Yau (J. Medical Sys. 2015).

Keywords

PEKS Integration of PEKS and PKE Secure-channel free Joint CCA security Encrypted EMR 

Notes

Acknowledgements

We thank Dr. Yohei Watanabe for helpful discussion.

Funding Information

This work was supported in part by the JSPS KAKENHI Grant Number JP16H02808 and the MIC/SCOPE #162108102.

Compliance with Ethical Standards

Conflict of interests

We declare that we have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T., Malone-Lee, J., Neven, G., Paillier, P., and Shi, H., Searchable encryption revisited: Consistency properties, relation to anonymous IBE, and extensions. J. Cryptol. 21(3):350–391, 2008.CrossRefGoogle Scholar
  2. 2.
    Abdalla, M., Bellare, M., and Neven, G.: Robust encryption. In: TCC, pp. 480–497, 2010CrossRefGoogle Scholar
  3. 3.
    Abdalla, M., Bellare, M., and Neven, G., Robust encryption. J. Cryptol. 31(2):307–350, 2018.CrossRefGoogle Scholar
  4. 4.
    Baek, J., Safavi-Naini, R., and Susilo, W.: On the integration of public key data encryption and public key encryption with keyword search. In: ISC, pp. 217–232, 2006Google Scholar
  5. 5.
    Bellare, M., and Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: ACM Conference on Computer and Communications Security, pp. 62–73, 1993Google Scholar
  6. 6.
    Bellare, M., and Shoup, S.: Two-tier signatures, strongly unforgeable signatures, and fiat-shamir without random oracles. In: Public Key Cryptography, pp. 201–216, 2007Google Scholar
  7. 7.
    Boneh, D., Crescenzo, G. D., Ostrovsky, R., and Persiano, G.: Public key encryption with keyword search. In: EUROCRYPT, pp. 506–522, 2004Google Scholar
  8. 8.
    Boneh, D., and Franklin, M. K.: Identity-based encryption from the weil pairing. In: CRYPTO, pp. 213–229, 2001Google Scholar
  9. 9.
    Boyen, X., and Waters, B.: Anonymous hierarchical identity-based encryption (without random oracles). In: CRYPTO, pp. 290–307, 2006Google Scholar
  10. 10.
    Buccafurri, F., Lax, G., Sahu, R. A., and Saraswat, V.: Practical and secure integrated PKE+PEKS with keyword privacy. In: SECRYPT, pp. 448–453, 2015Google Scholar
  11. 11.
    Canetti, R., Goldreich, O., and Halevi, S., The random oracle methodology, revisited. J. ACM 51(4): 557–594, 2004.CrossRefGoogle Scholar
  12. 12.
    Canetti, R., Halevi, S., and Katz, J.: Chosen-ciphertext security from identity-based encryption. In: EUROCRYPT, pp. 207–222, 2004Google Scholar
  13. 13.
    Chen, J., Lim, H. W., Ling, S., Wang, H., and Wee, H.: Shorter IBE and signatures via asymmetric pairings. In: Pairing-Based Cryptography, pp. 122–140, 2012CrossRefGoogle Scholar
  14. 14.
    Chen, Y., Zhang, J., Lin, D., and Zhang, Z., Generic constructions of integrated PKE and PEKS. Des. Codes Cryptography 78(2):493–526, 2016.CrossRefGoogle Scholar
  15. 15.
    Emura, K.: A generic construction of secure-channel free searchable encryption with multiple keywords. In: NSS, pp. 3–18, 2017Google Scholar
  16. 16.
    Emura, K., Miyaji, A., Rahman, M. S., and Omote, K., Generic constructions of secure-channel free searchable encryption with adaptive security. Secur. Commun. Netw. 8(8):1547–1560, 2015.CrossRefGoogle Scholar
  17. 17.
    Fang, L., Susilo, W., Ge, C., and Wang, J.: A secure channel free public key encryption with keyword search scheme without random oracle. In: CANS, pp. 248–258, 2009Google Scholar
  18. 18.
    Fang, L., Susilo, W., Ge, C., and Wang, J., Public key encryption with keyword search secure against keyword guessing attacks without random oracle. Inf. Sci. 238:221–241, 2013.CrossRefGoogle Scholar
  19. 19.
    Farshim, P., Libert, B., Paterson, K. G., and Quaglia, E. A.: Robust encryption, revisited. In: Public-Key Cryptography, pp. 352–368, 2013CrossRefGoogle Scholar
  20. 20.
    Fuhr, T., and Paillier, P.: Decryptable searchable encryption. In: ProvSec, pp. 228–236, 2007Google Scholar
  21. 21.
    Gentry, C.: Practical identity-based encryption without random oracles. In: EUROCRYPT, pp. 445–464, 2006CrossRefGoogle Scholar
  22. 22.
    Guo, L., and Yau, W., Efficient secure-channel free public key encryption with keyword search for EMRs in cloud storage. J. Med. Syst. 39(2):11, 2015.CrossRefGoogle Scholar
  23. 23.
    Hofheinz, D., and Weinreb, E., Searchable encryption with decryption in the standard model. IACR Cryptology ePrint Archive 2008:423, 2008.Google Scholar
  24. 24.
    Jutla, C. S., and Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. In: ASIACRYPT, pp. 1–20, 2013Google Scholar
  25. 25.
    Jutla, C. S., and Roy, A., Shorter quasi-adaptive NIZK proofs for linear subspaces. J. Cryptology 30(4): 1116–1156, 2017.CrossRefGoogle Scholar
  26. 26.
    Kiah, M. L. M., Nabi, M. S., Zaidan, B. B., and Zaidan, A. A., An enhanced security solution for electronic medical records based on AES hybrid technique with SOAP/XML and SHA-1. J. Med. Syst. 37(5):9971, 2013.CrossRefGoogle Scholar
  27. 27.
    Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: TCC, pp. 581–600, 2006CrossRefGoogle Scholar
  28. 28.
    Lu, C., Wu, Z., Liu, M., Chen, W., and Guo, J., A patient privacy protection scheme for medical information system. J. Med. Syst. 37(6):9982, 2013.CrossRefGoogle Scholar
  29. 29.
    Mohassel, P.: A closer look at anonymity and robustness in encryption schemes. In: ASIACRYPT, pp. 501–518, 2010Google Scholar
  30. 30.
    Pedersen, T. P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: CRYPTO, pp. 129–140, 1991Google Scholar
  31. 31.
    Rhee, H. S., Park, J. H., and Lee, D. H., Generic construction of designated tester public-key encryption with keyword search. Inf. Sci. 205:93–109, 2012.CrossRefGoogle Scholar
  32. 32.
    Saraswat, V., and Sahu, R. A.: Short integrated PKE+PEKS in standard model. In: SPACE, pp. 226–246, 2017Google Scholar
  33. 33.
    Suzuki, T., Emura, K., and Ohigashi, T.: A generic construction of integrated secure-channel free PEKS and PKE. In: ISPEC, pp. 69–86, 2018CrossRefGoogle Scholar
  34. 34.
    Wang, T., Au, M. H., and Wu, W.: An efficient secure channel free searchable encryption scheme with multiple keywords. In: NSS, pp. 251–265, 2016CrossRefGoogle Scholar
  35. 35.
    Wee, H.: Public key encryption against related key attacks. In: Public Key Cryptography, pp. 262–279, 2012CrossRefGoogle Scholar
  36. 36.
    Zhang, R., and Imai, H., Combining public key encryption with keyword search and public key encryption. IEICE Trans. 92-D(5):888–896, 2009.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Tokai UniversityTokyoJapan
  2. 2.National Institute of Information and Communications Technology (NICT)TokyoJapan

Personalised recommendations