Linde, Y., Buzo, A., and Gray, R., An algorithm for vector quantizer design. IEEE Trans. Commun. 28(1):84–95, 1980.
Article
Google Scholar
Cosman, P. C., Oehler, K. L., Riskin, E. A., and Gray, R. M., Using vector quantization for image processing. Proc. IEEE 81(9):1326–1341, 1993.
CAS
Article
Google Scholar
Cosman, P. C., Tseng, C., Gray, R. M., Olshen, R. A., Moses, L. E., Davidson, H. C. et al., Tree-structured vector quantization of CT chest scans: image quality and diagnostic accuracy. IEEE Trans. Med. Imaging 12(4):727–739, 1993.
CAS
Article
Google Scholar
Nakagaki, R., and Katsaggelos, A. K., A VQ-based blind image restoration algorithm. IEEE Trans. Image Process. 12(9):1044–1053, 2003.
Article
Google Scholar
Kekre, H. B., and Shrinath, P., Tumour delineation using statistical properties of the breast us images and vector quantization based clustering algorithms. International Journal of Image, Graphics and Signal Processing 5(11):1, 2013.
Article
Google Scholar
Chang, C. C., and Hu, Y. C., A fast LBG codebook training algorithm for vector quantization. IEEE Trans. Consum. Electron. 44(4):1201–1208, 1998.
Article
Google Scholar
Said, A., and Pearlman, W. A., A new, fast, and efficient image codec based on set partitioning in hierarchical trees. IEEE Transactions on Circuits and Systems for Video Technology 6(3):243–250, 1996.
Article
Google Scholar
Christopoulos, C., Askelof, J., and Larsson, M., Efficient methods for encoding regions of interest in the upcoming JPEG2000 still image coding standard. IEEE Signal Processing Letters 7(9):247–249, 2000.
Article
Google Scholar
Park, K. H., and Park, H. W., Region-of-interest coding based on set partitioning in hierarchical trees. IEEE Transactions on Circuits and Systems for Video Technology 12(2):106–113, 2002.
Article
Google Scholar
Chiu, E., Vaisey, J., and Atkins, M. S., Wavelet-based space-frequency compression of ultrasound images. IEEE Trans. Inf. Technol. Biomed. 5(4):300–310, 2001.
CAS
Article
Google Scholar
Askelöf, J., Carlander, M. L., and Christopoulos, C., Region of interest coding in JPEG 2000. Signal Process. Image Commun. 17(1):105–111, 2002.
Article
Google Scholar
Liu, L., and Fan, G., A new JPEG2000 region-of-interest image coding method: Partial significant bitplanes shift. IEEE Signal Processing Letters 10(2):35–38, 2003.
Article
Google Scholar
Hosseini, S. M., and Naghsh-Nilchi, A. R., Medical ultrasound image compression using contextual vector quantization. Comput. Biol. Med. 42(7):743–750, 2012.
Article
Google Scholar
Ansari, M. A., and Anand, R. S., Context-based medical image compression for ultrasound images with contextual set partitioning in hierarchical trees algorithm. Adv. Eng. Softw. 40(7):487–496, 2009.
Article
Google Scholar
Huang, H. C., Pan, J. S., Lu, Z. M., Sun, S. H., and Hang, H. M., Vector quantization based on genetic simulated annealing. Signal Process. 81(7):1513–1523, 2001.
Article
Google Scholar
Kamal, A. N. B., Iteration free fractal image compression for color images using vector quantization, genetic algorithm, and simulated annealing. Turkish Online Journal of Science & Technology 5(1):39–48, 2015.
Google Scholar
Vallabhaneni, R. B., & Rajesh, V., On the Performance Characteristics of Embedded Techniques for Medical Image Compression. 76:662-665, 2017.
Jiang, H., et al., Medical image compression based on vector quantization with variable block sizes in the wavelet domain. Computational Intelligence and Neuroscience, 5, 2012.
Gaudeau, Y., and Moureaux, J. M., Lossy compression of volumetric medical images with 3D dead-zone lattice vector quantization. Annals of Telecommunications-annales des télécommunications 64(5-6):359–367, 2009.
Article
Google Scholar
Ayoobkhan, M. U. A., Chikkannan, E., and Ramakrishnan, K., Lossy image compression based on prediction error and vector quantization. EURASIP Journal on Image and Video Processing 2017(1):35, 2017.
Article
Google Scholar
Huang, Z., Zhang, X., Chen, L., Zhu, Y., An, F., Wang, H., and Feng, S., A Hardware-Efficient Vector Quantizer Based on Self-Organizing Map for High-Speed Image Compression. Appl. Sci. 7(11):1106, 2017.
Article
Google Scholar
Nowaková, J., Prílepok, M., and Snášel, V., Medical image retrieval using vector quantization and fuzzy S-tree. J. Med. Syst. 41(2):18, 2017.
Article
Google Scholar
Eben Sophia, P., and Anitha, J., Contextual Medical Image Compression using Normalized Wavelet-Transform Coefficients and Prediction. IETE J. Res. 63(5):671–683, 2017.
Article
Google Scholar
Moreno-Bernal, P., Cruz-Chávez, M.A., Rodríguez-León, A., López, O., Malumbres, M.P., Martínez-Rangel, M.G., Martínez-Oropeza, A., Martínez-Bahena, B. and Juárez-Chávez, J.Y., Simulated annealing algorithm for 2D image compression. In Electronics, Robotics and Automotive Mechanics Conference (CERMA), IEEE Ninth, 129-134. 2012.
Hopkins, M., Mitzenmacher, M., & Wagner-Carena, S., Simulated Annealing for JPEG Quantization. arXiv preprint arXiv:1709.00649. 2017.
Chakrapani, Y., and Rajan, K. S., Hybrid genetic-simulated annealing approach for fractal image compression. Int. J. Comput. Intell. 4:308–313, 2008.
Google Scholar
Demsar, J., Statistical comparisons of classifiers over multiple datasets. J. Mach. Learn. Res. 7:1–30, 2006.
Google Scholar