Almadhoun, M. D., and El-Halees, A., Automated recognition of urinary microscopic solid particles.Journal of medical engineering & technology 38(2):104–110, 2014.
Article
Google Scholar
Avci, D., Leblebicioglu, M. K., Poyraz, M., and Dogantekin, E., A new method based on adaptive discrete wavelet entropy energy and neural network classifier (ADWEENN) for recognition of urine cells from microscopic images independent of rotation and scaling. Journal of medical systems 38(2):7, 2014.
Article
PubMed
Google Scholar
Bell, S., Lawrence Zitnick, C., Bala, K., and Girshick, R.: Inside-outside net: Detecting objects in context with skip pooling and recurrent neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2874–2883, 2016.
Budak, Y. U., and Huysal, K., Comparison of three automated systems for urine chemistry and sediment analysis in routine laboratory practice. Clinical laboratory 57(1):47, 2011.
PubMed
Google Scholar
Cai, Z., Fan, Q., Feris, R. S., and Vasconcelos, N.: A unified multi-scale deep convolutional neural network for fast object detection. European conference on computer vision, pp. 354–370. Springer, 2016.
Chien, T. I., Kao, J. T., Liu, H. L., Lin, P. C., Hong, J. S., Hsieh, H. P., and Chien, M. J., Urine sediment examination: a comparison of automated urinalysis systems and manual microscopy. Clinica Chimica Acta 384(1):28–34, 2007.
Article
CAS
Google Scholar
Girshick, R.: Fast r-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448, 2015.
Girshick, R., Donahue, J., Darrell, T., and Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 580–587, 2014.
Han, J., Zhang, D., Cheng, G., Liu, N., and Xu, D., Advanced deep-learning techniques for salient and category-specific object detection: a survey. IEEE Signal Processing Magazine 35(1):84–100, 2018.
Article
Google Scholar
He, K., Gkioxari, G., Dollár, P., and Girshick, R.: Mask r-CNN. In: IEEE International conference on computer vision (ICCV), pp. 2980–2988. IEEE, 2017.
He, K., Zhang, X., Ren, S., and Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. In: European conference on computer vision, pp. 346–361. Springer , 2014.
He, K., Zhang, X., Ren, S., and Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 , 2016.
Hoang Ngan Le, T., Zheng, Y., Zhu, C., Luu, K., and Savvides, M.: Multiple scale faster-RCNN approach to driver’s cell-phone usage and hands on steering wheel detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 46–53, 2016.
Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., Fischer, I., Wojna, Z., Song, Y., Guadarrama, S., et al., Speed/accuracy trade-offs for modern convolutional object detectors. In: IEEE CVPR, Vol. 4, 2017.
İnce, F. D., Ellidaġ, H. Y., Koseoġlu, M., Ṡimṡek, N., Yalċın, H., and Zengin, M.O., The comparison of automated urine analyzers with manual microscopic examination for urinalysis automated urine analyzers and manual urinalysis. Practical Laboratory Medicine 5:14–20, 2016.
Article
PubMed
PubMed Central
Google Scholar
Kim, K. H., Hong, S., Roh, B., Cheon, Y., and Park, M.: Pvanet: Deep but lightweight neural networks for real-time object detection. arXiv:abs/1608.08021, 2016
Kong, T., Yao, A., Chen, Y., and Sun, F.: Hypernet: towards accurate region proposal generation and joint object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 845–853, 2016.
Kouri, T., Fogazzi, G., Gant, V., Hallander, H., Hofmann, W., and Guder, W.: European urinalysis guidelines. Scandinavian Journal of Clinical and Laboratory Investigation-Supplement 60(231), 2000
Li, C., Tang, Y. Y., Luo, H., and Zheng, X.: Join gabor and scattering transform for urine sediment particle texture analysis. In: 2nd international conference on Cybernetics (CYBCONF), 2015 IEEE, pp. 410–415. IEEE, 2015.
Li, Y., and He, K.: Sun, J., others: r-FCN: Object detection via region-based fully convolutional networks. In: Advances in neural information processing systems, pp. 379–387, 2016.
Liang, Y., Fang, B., Qian, J., Chen, L., Li, C., and Liu, Y., False positive reduction in urinary particle recognition. Expert Systems with Applications 36(9):11,429–11,438, 2009.
Article
Google Scholar
Lin, T. Y., Dollár, P., Girshick, R., He, K., Hariharan, B., and Belongie, S.: Feature pyramid networks for object detection. In: CVPR, Vol. 1, p. 4, 2017.
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., and Berg, A. C.: SSD: Single shot multibox detector. In: European conference on computer vision, pp. 21–37. Springer, 2016.
Long, J., Shelhamer, E., and Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440, 2015.
Ranzato, M., Taylor, P., House, J., Flagan, R., LeCun, Y., and Perona, P., Automatic recognition of biological particles in microscopic images. Pattern recognition letters 28(1):31–39, 2007.
Article
Google Scholar
Redmon, J., Divvala, S., Girshick, R., and Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788, 2016.
Redmon, J., and Farhadi, A.: Yolo9000: better, faster, stronger. In: 2017 IEEE Conference on computer vision and pattern recognition (CVPR), pp. 6517–6525. IEEE, 2017.
Redmon, J., and Farhadi, A., 2018
Ren, S., He, K., Girshick, R., and Sun, J.: Faster R-CNN: Towards real-time object detection with region proposal networks. In: Advances in neural information processing systems, pp. 91–99, 2015.
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., et al., Imagenet large scale visual recognition challenge. International Journal of Computer Vision 115(3):211–252, 2015.
Article
Google Scholar
Schmid, C., and Mohr, R., Local grayvalue invariants for image retrieval. IEEE transactions on pattern analysis and machine intelligence 19(5):530–535, 1997.
Article
Google Scholar
Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., and LeCun, Y.: Overfeat: Integrated recognition, localization and detection using convolutional networks. arXiv:1312.6229, 2013
Shen, M. l., and Zhang, R.: Urine sediment recognition method based on svm and adaboost. In: International conference on Computational intelligence and software engineering, 2009. ciSE 2009, pp. 1–4. IEEE, 2009.
Shrivastava, A., Gupta, A., and Girshick, R.: Training region-based object detectors with online hard example mining. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 761–769, 2016.
Simonyan, K., and Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014
Uijlings, J. R., Van De Sande, K. E., Gevers, T., and Smeulders, A. W., Selective search for object recognition. International journal of computer vision 104(2):154–171, 2013.
Article
Google Scholar
Zeiler, M. D., and Fergus, R.: Visualizing and understanding convolutional networks. In: European conference on computer vision, pp. 818–833. Springer, 2014.
Zhang, L., Lin, L., Liang, X., and He, K.: Is Faster r-CNN doing well for pedestrian detection?. In: European conference on computer vision, pp. 443–457. Springer, 2016.
Zhang, S., Wen, L., Bian, X., Lei, Z., and Li, S. Z.: Single-shot refinement neural network for object detection. In: IEEE CVPR, 2018.
Zhou, Y., and Zhou, H.: Automatic classification and recognition of particles in urinary sediment images. In: Computer, informatics, cybernetics and applications, pp. 1071–1078. Springer, 2012.
Zitnick, C. L., and Dollár, P.: Edge boxes: Locating object proposals from edges. In: European conference on computer vision, pp. 391–405. Springer, 2014.