Advertisement

Use of Biotechnological Devices in the Quantification of Psychophysiological Workload of Professional Chess Players

  • Juan P. Fuentes
  • Santos Villafaina
  • Daniel Collado-Mateo
  • Ricardo de la Vega
  • Narcis Gusi
  • Vicente Javier Clemente-Suárez
Education & Training
Part of the following topical collections:
  1. Emergent Visualization Systems in Biomedical Sciences (TEEM 2017)

Abstract

Psychophysiological requirements of chess players are poorly understood, and periodization of training is often made without any empirical basis. For this reason, the aim of the present study was to investigate the psychophysiological response and quantify the player internal load during, and after playing a chess game. The participant was an elite 33 year-old male chess player ranked among the 300 best chess players in the world. Thus, cortical arousal by critical flicker fusion threshold, electroencephalogram by the theta Fz/alpha Pz ratio and autonomic modulation by heart rate variability were analyzed. Data revealed that cortical arousal by critical flicker fusion threshold and theta Fz/alpha Pz ratio increased and heart rate variability decreased during chess game. All these changes indicated that internal load increased during the chess game. In addition, pre-activation was detected in pre-game measure, suggesting that the prefrontal cortex might be preparatory activated. For these reasons, electroencephalogram, critical flicker fusion threshold and heart rate variability analysis may be highly applicable tools to control and monitor workload in chess player.

Keywords

Chess game EEG Critical cliker fusion Elite chess player HRV Mental load 

Notes

Acknowledgements

In the framework of Spanish National R + D + i Plan, the current study has been cofunded by the Spanish Ministry of Economy and Competitiveness with the reference DEP2015-70356. Also, the author DCM is supported by a grant from the Spanish Ministry of Education, Culture and Sport (FPU14/01283) and the author SV is supported by a grant from regional department of economy and infrastructure of the Government of Extremadura and European Social Fund (PD16008). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Compliance with ethical standards

Conflict of interest

None.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Amidzic, O., Riehle, H.J., and Elbert, T., Toward a psychophysiology of expertise - focal magnetic gamma bursts as a signature of memory chunks and the aptitude of chess players. J. Psychophysiol. 20(4):253–258, 2006.CrossRefGoogle Scholar
  2. 2.
    Troubat, N., Fargeas-Gluck, M.A., Tulppo, M., and Dugue, B., The stress of chess players as a model to study the effects of psychological stimuli on physiological responses: An example of substrate oxidation and heart rate variability in man. Eur. J. Appl. Physiol. 105(3):343–349, 2009.CrossRefPubMedGoogle Scholar
  3. 3.
    Elkies, N.D., and Stanley, R.P., The mathematical knight. Math. Intell. 25(1):22–34, 2003.CrossRefGoogle Scholar
  4. 4.
    Volke, H.J., Dettmar, P., Richter, P., and Rudolf, M., Evoked coherences of EEG in chess playing. Int. J. Psychophysiol. 30(1–2):225–226, 1998.CrossRefGoogle Scholar
  5. 5.
    Atherton, M., Zhuang, J., Bart, W.M., Hu, X.P., and He, S., A functional MRI study of high-level cognition. I. The game of chess. Cogn. Brain Res. 16(1):26–31, 2003.CrossRefGoogle Scholar
  6. 6.
    Amidzic, O., Riehle, H.J., Fehr, T., Wienbruch, C., and Elbert, T., Pattern of focal gamma-bursts in chess players - grandmasters call on regions of the brain not used so much by less skilled amateurs. Nature. 412(6847):603–603, 2001.CrossRefPubMedGoogle Scholar
  7. 7.
    Nichelli, P., Grafman, J., Pietrini, P., Alway, D., Carton, J.C., and Miletich, R., Brain activity in chess playing. Nature. 369(6477):191–191, 1994.CrossRefPubMedGoogle Scholar
  8. 8.
    Koechlin, E., and Hyafil, A., Anterior prefrontal function and the limits of human decision-making. Science. 318(5850):594–598, 2007.CrossRefPubMedGoogle Scholar
  9. 9.
    Tomporowski, P.D., Effects of acute bouts of exercise on cognition. Acta Psychol. 112(3):297–324, 2003.CrossRefGoogle Scholar
  10. 10.
    Lafere, P., Balestra, C., Hemelryck, W., Donda, N., Sakr, A., Taher, A., Marroni, S., and Germonpre, P., Evaluation of critical flicker fusion frequency and perceived fatigue in divers after air and enriched air nitrox diving. Diving Hyperb. Med. 40(3):114–118, 2010.PubMedGoogle Scholar
  11. 11.
    Li, Z.Y., Kun, J.A., Chen, M., and Wang, C.T., Reducing the effects of driving fatigue with magnitopuncture stimulation. Accid. Anal. Prev. 36(4):501–505, 2004.CrossRefPubMedGoogle Scholar
  12. 12.
    Saito, S., Does fatigue exist in a quantitative measurement of eye-movments. Ergonomics. 35(5–6):607–615, 1992.CrossRefPubMedGoogle Scholar
  13. 13.
    Costa, G., Evaluation of workload in air-traffic-controllers. Ergonomics. 36(9):1111–1120, 1993.CrossRefPubMedGoogle Scholar
  14. 14.
    Davranche, K., and Pichon, A., Critical flicker frequency threshold increment after an exhausting exercise. J. Sport Exerc. Psychol. 27(4):515–520, 2005.CrossRefGoogle Scholar
  15. 15.
    Clemente-Suarez, V.J., and Robles-Pérez, J.J., Fatiga del sistema nervioso después de realizar un test de capacidad de sprints repetidos (RSA) en jugadores de futbol profesionales. Arch. Med. Deporte. 143:103–112, 2011.Google Scholar
  16. 16.
    Clemente-Suarez, V., and Robles-Perez, J., Acute effects of caffeine supplementation on cortical arousal, anxiety, physiological response and marksmanship in close quarter combat. Ergonomics. 58(11):1842–1850, 2015.CrossRefPubMedGoogle Scholar
  17. 17.
    Clemente-Suarez, V.J., and Robles-Perez, J.J., Psycho-physiological response of soldiers in urban combat. Anales De Psicologia. 29(2):598–603, 2013.Google Scholar
  18. 18.
    Mukherjee, S., Yadav, R., Yung, I., Zajdel, D.P., and Oken, B.S., Sensitivity to mental effort and test-retest reliability of heart rate variability measures in healthy seniors. Clin. Neurophysiol. 122(10):2059–2066, 2011.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Goldman-Rakic, P.S., The prefrontal landscape: Implications of functional architecture for understanding human mentation and the central executive. Philos. Trans. R. Soc. Lond. B Biol. Sci. 351(1346):1445–1453, 1996.CrossRefPubMedGoogle Scholar
  20. 20.
    Porges, S.W., and Raskin, D.C., Respiratory and heart rate components of attention. J. Exp. Psychol. 81(3):497, 1969.CrossRefPubMedGoogle Scholar
  21. 21.
    Luque-Casado, A., Zabala, M., Morales, E., Mateo-March, M., and Sanabria, D., Cognitive performance and heart rate variability: The influence of fitness level. PLoS One. 8(2), 2013.Google Scholar
  22. 22.
    Inanaga, K., Frontal midline theta rhythm and mental activity. Psychiatry Clin. Neurosci. 52(6):555–566, 1998.CrossRefPubMedGoogle Scholar
  23. 23.
    Amin, H.U., Malik, A.S., Hussain, M., Kamel, N., Chooi, W.T., Ieee., Brain behavior during reasoning and problem solving task: An EEG study. In: 5th International Conference on Intelligent And Advanced Systems (ICIAS), Kuala Lumpur, Malaysia, Jun 03-05 2014. International Conference on Advanced Robotics and Intelligent Systems.Google Scholar
  24. 24.
    Lin, C.L, Jung, M., Wu, Y.C., Lin, C.T., She, H.C., Ieee., Brain Dynamics of Mathematical Problem Solving. In: 34th Annual International Conference of the IEEE Engineering-in-Medicine-and-Biology-Society (EMBS), San Diego, CA, Aug 28-Sep 01 2012. IEEE Engineering in Medicine and Biology Society Conference Proceedings. pp 4768–4771Google Scholar
  25. 25.
    Jensen, O., and Tesche, C.D., Frontal theta activity in humans increases with memory load in a working memory task. Eur. J. Neurosci. 15(8):1395–1399, 2002.CrossRefPubMedGoogle Scholar
  26. 26.
    Lundqvist, M., Herman, P., and Lansner, A., Theta and gamma power increases and alpha/beta power decreases with memory load in an attractor network model. J. Cogn. Neurosci. 23(10):3008–3020, 2011.CrossRefPubMedGoogle Scholar
  27. 27.
    Itthipuripat, S., Wessel, J.R., and Aron, A.R., Frontal theta is a signature of successful working memory manipulation. Exp. Brain Res. 224(2):255–262, 2013.CrossRefPubMedGoogle Scholar
  28. 28.
    Holm, A., Lukander, K., Korpela, J., Sallinen, M., and Muller, K.M.I., Estimating brain load from the EEG. TheScientificWorldJournal. 9:639–651, 2009.CrossRefPubMedGoogle Scholar
  29. 29.
    Elo, A., The rating of Chessplayers, past and present. Arco, New York, 1978.Google Scholar
  30. 30.
    Di Fatta, G., Haworth, G.M., Regan, K.W., Ieee., Skill Rating by Bayesian Inference. 2009 Ieee Symposium on Computational Intelligence and Data Mining:89–94, 2009.Google Scholar
  31. 31.
    Camm, A.J., Malik, M., Bigger, J.T., Breithardt, G., Cerutti, S., Cohen, R.J., Coumel, P., Fallen, E.L., Kennedy, H.L., Kleiger, R.E., Lombardi, F., Malliani, A., Moss, A.J., Rottman, J.N., Schmidt, G., Schwartz, P.J., and Singer, D.H., Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Eur. Heart J. 17(3):354–381, 1996.CrossRefGoogle Scholar
  32. 32.
    Collado-Mateo, D., Adsuar, J.C., Olivares, P.R., Cano-Plasencia, R., and Gusi, N., Using a dry electrode EEG device during balance tasks in healthy young-adult males: Test-retest reliability analysis. Somatosens. Mot. Res. 32(4):219–226, 2015.CrossRefPubMedGoogle Scholar
  33. 33.
    Jung, T.P., Makeig, S., Westerfield, M., Townsend, J., Courchesne, E., and Sejnowski, T.J., Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects. Clin. Neurophysiol. 111(10):1745–1758, 2000.CrossRefPubMedGoogle Scholar
  34. 34.
    da Costa, M.P., da Silva, N.T., de Azevedo, F.M., Pastre, C.M., and Marques-Vanderlei, L.C., Comparison of polar((R)) RS800G3 heart rate monitor with polar((R)) S810i and electrocardiogram to obtain the series of RR intervals and analysis of heart rate variability at rest. Clin. Physiol. Funct. Imaging. 36(2):112–117, 2016.CrossRefGoogle Scholar
  35. 35.
    Tarvainen, M.P., Niskanen, J.P., Lipponen, J.A., Ranta-aho, P.O., and Karjalainen, P.A., Kubios HRV - Heart rate variability analysis software. Comput. Methods Prog. Biomed. 113(1):210–220, 2014.CrossRefGoogle Scholar
  36. 36.
    Tarvainen, M.P., Ranta-aho, P.O., and Karjalainen, P.A., An advanced detrending method with application to HRV analysis. IEEE Trans. Biomed. Eng. 49(2):172–175, 2002.CrossRefPubMedGoogle Scholar
  37. 37.
    Clemente-Suarez, V., de la Vega, R., Robles-Perez, J., Lautenschlaeger, M., and Fernandez-Lucas, J., Experience modulates the psychophysiological response of airborne warfighters during a tactical combat parachute jump. Int. J. Psychophysiol. 110:212–216, 2016.CrossRefPubMedGoogle Scholar
  38. 38.
    Regan, K.W., Biswas, T., Zhou, J., Human and computer preferences at chess. Paper presented at the Workshops at the Twenty-Eighth AAAI Conference on Artificial Intelligence., 2014.Google Scholar
  39. 39.
    Laureano-Cruces, A.L., Hernández-González, D.E., Mora-Torres, M., and Ramírez-Rodríguez, J., Application of a cognitive model of emotional appraisal to the board evaluation function of a program that plays chess. Revista de Matemática Teoría y Aplicaciones. 19(2):211–237, 2012.CrossRefGoogle Scholar
  40. 40.
    Postma, M.A., Schellekens, J.M., Hanson, E.K.S., and Hoogeboom, P.J., Fz theta divided by Pz alpha as an index of task load during a PC-based air traffic control simulation. In: de Waard, D., Brookhuis, R., van Egmond, R., and Boersma, T. (Eds.), Human factors in design, safety, and management. Shaker Publishing, Maastricht, The Netherlands, pp. 1–5, 2005.Google Scholar
  41. 41.
    Gevins, A., and Smith, M.E., Neurophysiological measures of working memory and individual differences in cognitive ability and cognitive style. Cereb. Cortex. 10(9):829–839, 2000.CrossRefPubMedGoogle Scholar
  42. 42.
    Howells, F.M., Stein, D.J., and Russell, V.A., Perceived mental effort correlates with changes in tonic arousal during attentional tasks. Behav. Brain Funct. 6, 2010.Google Scholar
  43. 43.
    Clemente-Suarez, V., Martínez, A., Muñoz, V., and González, J., Fatigue of central nervous system after an incremental maximal oxygen uptake test. Arch. Med. Deporte. 137:107–118, 2010.Google Scholar
  44. 44.
    Clemente-Suarez, V., Fatiga del sistema nervioso después de una prueba de contrarreloj de 30’en cicloergómetro en ciclistas jóvenes. Motricidad Eur. J. Hum. Mov. 25, 2010.Google Scholar
  45. 45.
    Clemente-Suarez, V., Fatigue of nervous system through flicker fusion thresholds after a maximum incremental cycling test. J. Sport Health Res. 3(1):1–21, 2011.Google Scholar
  46. 46.
    Presland, J.D., Dowson, M.N., and Cairns, S.P., Changes of motor drive, cortical arousal and perceived exertion following prolonged cycling to exhaustion. Eur. J. Appl. Physiol. 95(1):42–51, 2005.CrossRefPubMedGoogle Scholar
  47. 47.
    Clemente-Suarez, V., Huertas, C., and Juárez, D., Nervous system fatigue flicker fusion thresholds after performing a test of maximal strength in squat. Rev Entrenamiento Deportivo. 25(3):5–9, 2011.Google Scholar
  48. 48.
    Godefroy, D., Rousseu, C., Vercruyssen, F., Cremieux, J., and Brisswalter, J., Influence of physical exercise on perceptual response in aerobically trained subjects. Percept. Mot. Skills. 94(1):68–70, 2002.CrossRefPubMedGoogle Scholar
  49. 49.
    Clemente-Suarez, V.J., The application of cortical arousal assessment to control neuromuscular fatigue during strength training. J. Mot. Behav. 49(4):429–434, 2017.CrossRefPubMedGoogle Scholar
  50. 50.
    Clemente-Suarez, V.J., Robles-Perez, J.J., Herrera-Mendoza, K., Herrera-Tapias, B., and Fernandez-Lucas, J., Psychophysiological response and fine motor skills in high-altitude parachute jumps. High Alt. Med. Biol. 18(4):392–399, 2017.CrossRefPubMedGoogle Scholar
  51. 51.
    Clemente-Suarez, V.J., Robles-Perez, J.J., and Fernandez-Lucas, J., Psycho-physiological response in an automatic parachute jump. J. Sports Sci. 35(19):1872–1878, 2017.CrossRefPubMedGoogle Scholar
  52. 52.
    Clemente-Suarez, V.J., Palomera, P.R., and Robles-Perez, J.J., Psychophysiological response to acute-high-stress combat situations in professional soldiers. Stress Health: Journal of the International Society for the Investigation of Stress, 2017, 2017.Google Scholar
  53. 53.
    Delgado-Moreno, R., Robles-Perez, J.J., and Clemente-Suarez, V.J., Combat stress decreases memory of warfighters in action. J. Med. Syst. 41(8):124, 2017.CrossRefPubMedGoogle Scholar
  54. 54.
    Oboshi, Y., Kikuchi, M., Shimizu, Y., Yoshimura, Y., Hiraishi, H., Okada, H., Magata, Y., and Ouchi, Y., Pre-task prefrontal activation during cognitive processes in aging: A near-infrared spectroscopy study. PLoS One. 9(6), 2014.Google Scholar
  55. 55.
    Dreher, J.C., Koechlin, E., Ali, S.O., and Grafman, J., The roles of timing and task order during task switching. NeuroImage. 17(1):95–109, 2002.CrossRefPubMedGoogle Scholar
  56. 56.
    Koechlin, E., Corrado, G., Pietrini, P., and Grafman, J., Dissociating the role of the medial and lateral anterior prefrontal cortex in human planning. Proc. Natl. Acad. Sci. U. S. A. 97(13):7651–7656, 2000.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Borghini, G., Astolfi, L., Vecchiato, G., Mattia, D., and Babiloni, F., Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness. Neurosci. Biobehav. Rev. 44:58–75, 2014.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Sport ScienceUniversity of ExtremaduraBadajozSpain
  2. 2.Facultad de EducaciónUniversidad Autónoma de ChileTalcaChile
  3. 3.Department of Physical Education, Sport & Human MovementAutonomous University of MadridMadridSpain
  4. 4.Applied Psychophysiological Research Group, Faculty of Sport Sciences, Department of Sport ScienceEuropean University of MadridMadridSpain
  5. 5.Grupo de Investigación en Cultura, Educación y SociedadUniversidad de la CostaBarranquillaColombia

Personalised recommendations