Skip to main content
Log in

Medical Images are Safe – an Enhanced Chaotic Scrambling Approach

  • Patient Facing Systems
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

The patient data confidentiality is one of the vital security aspects in e-Health and m-Health services. In particular, providing confidentiality to the patient’s medical image is essential and the protection approaches have to be explored in-depth due to the rapid progress in the technologies of teleradiology and PACS. In this study, the pseudo random number generators (PRNGs), namely, the linear congruential generator (LCG) and XOR shift generator (XSG) are improved and combined with improved logistic 2D coupled chaotic map to provide enhanced chaos based encryption. The proposed scheme encrypts the Digital Imaging and Communication in Medicine (DICOM) images to protect the patient confidentiality during the storage and transfer in radiological information system (RIS). The cipher image was measured with various security analyses and tested with different test suites to prove its randomness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Lian, S.G., A bloc cipher based on chaotic neural networks. Neurocomputing. 72(4–6):1296–1301, 2009 https://doi.org/10.1016/j.neucom.2008.11.005.

    Article  Google Scholar 

  2. Fridrich, J., Symmetric ciphers based on two-dimensional chaotic maps. Int J Bifurcat Chaos. 8:1259–1284, 1998 https://doi.org/10.1142/S021812749800098X.

    Article  Google Scholar 

  3. Parvees, M.Y.M., Samath, J.A., Raj, I.K., Bose, B.P., (2016) International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), 1067–1072. https://doi.org/10.1109/ICEEOT.2016.7754851

  4. Belazi, A., Ahmed, A., El-Latif, A., and Belghith, S., A novel image encryption scheme based on substitution-permutation network and chaos. Signal Process. 128:155–170, 2016. https://doi.org/10.1016/j.sigpro.2016.03.021.

    Article  Google Scholar 

  5. Assad, S.E., and Farajallah, M., A new chaos-based image encryption system. Signal process. Image Commun. 41:144–157, 2016. https://doi.org/10.1016/j.image.2015.10.004.

  6. Chen, J., Zhu, Z., Fu, C., Yu, H., and Zhang, L., A fast chaos-based image encryption scheme with a dynamic state variables selection mechanism. Commun Nonlinear Sci Numer Simul. 20(3):846–860, 2015 https://doi.org/10.1016/j.cnsns.2014.06.032.

    Article  Google Scholar 

  7. Ye, G., Huang, X., (2016) A secure image encryption algorithm based on chaotic maps and SHA-3. Security Comm Netw., https://doi.org/10.1002/sec.1458.

  8. Praveenkumar, P., Amirtharajan, R., Thenmozhi, K., and Rayappan, J.B.B., Triple chaotic image scrambling on RGB – A random image encryption approach. Security Comm Netw. 8(18):3335–3345, 2015 https://doi.org/10.1002/sec.1257.

    Article  Google Scholar 

  9. Ravichandran, D., Praveenkumar, P., Rayappan, J.B.B., and Amirtharajan, R., Chaos based crossover and mutation for securing DICOM image. Comp Biol and Med. 72:170–184, 2016 https://doi.org/10.1016/j.compbiomed.2016.03.020.

    Article  Google Scholar 

  10. Parvees, M.Y.M., Samath, J.A., and Bose, B.P., Secured medical images - a chaotic pixel scrambling approach. J Med Syst. 40:232, 2016 https://doi.org/10.1007/s10916-016-0611-5.

    Article  PubMed  Google Scholar 

  11. Liu, G., Li, J., and Liu, H., Chaos-based color pathological image encryption scheme using one-time keys. Comput Biol Med. 45:111–117. , 2014. https://doi.org/10.1016/j.compbiomed.2013.11.010.

  12. Fu, C., Meng, W.H, Zhan, Y.F, Zhu, Z.L, Lau, F.C., Tse, C.K., and Ma, H.F, An efficient and secure medical image protection scheme based on chaotic maps. Comput Biol Med. 43:1000–1010, 2013 https://doi.org/10.1016/j.compbiomed.2013.05.005.

  13. Zhang, S., Gao, T., and Gao, L., A novel encryption frame for medical image with watermark based on hyperchaotic system. Math Probl Eng., 2014 https://doi.org/10.1155/2014/240749.

  14. Praveenkumar, P., Amirtharajan, R., and Thenmozhi, K., Medical data sheet in safe havens – A tri-layer cryptic solution. Comput Biol Med. 62:264–276, 2015 https://doi.org/10.1016/j.compbiomed.2015.04.031.

    Article  PubMed  Google Scholar 

  15. Dzwonkowski, M., Papaj, M., and Rykaczewski, R., A new quaternion-based encryption method for DICOM images. IEEE Trans Image Process, 2015 https://doi.org/10.1109/TIP.2015.2467317.

  16. Al-Haj, A., Abandah, G., and Hussein, N., Crypto-based algorithms for secured medical. IET Info Secur. 9:365–373, 2015 https://doi.org/10.1049/iet-ifs.2014.0245.

    Article  Google Scholar 

  17. Jeyamala, C., and Thiruvengadam, S.J., A hybrid chaotic and number theoretic approach for securing DICOM images. Security and Communications Networks, 2017. https://doi.org/10.1155/2017/6729896.

  18. Cao, W., Zhou, Y., Philip, C.L.P., and Xia, L., Medical image encryption using edge maps. Signal Processing. 132:96–109, 2017.

    Article  Google Scholar 

  19. Xiao, D., Fu, Q., Xiang, T., and Zhang, Y., Chaotic image encryption of regions of interest. International Journal of Bifurcation and Chaos. 26(11):1650193, 2016. https://doi.org/10.1142/S0218127416501935.

    Article  Google Scholar 

  20. Fu, C., Zhang, G., Bian, O., Lei, W., and Ma, H., A novel medical image protection scheme using a 3-dimensional chaotic system. PLoS One. 9:e115773, 2014 https://doi.org/10.1371/journal.pone.0115773.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kanso, A., and Ghebleh, M., A novel image encryption algorithm based on a 3D chaotic map. Commun. Nonlinear Sci Numer Simul. 17:2943–2959, 2012 https://doi.org/10.1016/j.cnsns.2011.11.030.

    Article  Google Scholar 

  22. Seyedzadeh, S.M., and Mirzakuchaki, S., A fast color image encryption algorithm based on coupled two-dimensinal piecewise chaotic map. Signal Process. 92:1202–1215, 2012 https://doi.org/10.1016/j.sigpro.2011.11.004.

    Article  Google Scholar 

  23. Kanso, A., and Ghebleh, M., An efficient and robust image encryption scheme for medical applications. Commun Nonlinear Sci Numer Simul. 24:98–116, 2015 https://doi.org/10.1016/j.cnsns.2014.12.005.

    Article  Google Scholar 

  24. Padmapriya, P., Rajalakshmi, P., Thenmozhi, K., Rayappan, J.B.B., and Amirtharajan, R., Horse DNA runs on image: A novel road to image encryption. Res J Inform Technol. 8:1–9, 2016 https://doi.org/10.3923/rjit.2016.1.9.

    Article  Google Scholar 

  25. Zhou, X.Q., Huang, H.K., and Lou, S.L., Authenticity and integrity of digital mammography images. IEEE Trans Med Imag. 20(8):784–791, 2001. https://doi.org/10.1109/42.938246.

    Article  CAS  Google Scholar 

  26. Kobayashi, L.O.M., Furuie, S.S., and Barreto, P.S.L.M., Providing integrity and authenticity in DICOM images: A novel approach. IEEE Trans Inf Technol Biomed. 13(4):582–589, 2009. https://doi.org/10.5120/4905-7416.

    Article  PubMed  Google Scholar 

  27. Tan, C.K., Ng, J.C., Xu, X., Poh, C.L., Guan, Y.L., and Sheah, K., Security protection of DICOM medical images using dual-layer reversible watermarking with tamper detection capability. J Digit Imaging. 24(3):528–540, 2011. https://doi.org/10.1007/s10278-010-9295-4.

    Article  PubMed  Google Scholar 

  28. Marsaglia, G., Xorshift RNGs. J Stat Softw. 8(14):1–6, 2003 http://dx.doi.org/10.18637/jss.v008.i14.

    Article  Google Scholar 

  29. Fishman, G.S., A first course in Monte Carlo. Thomson Brooks/Cole, Belmont, CA, 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Y. Mohamed Parvees.

Additional information

This article is part of the Topical Collection on Patient Facing Systems

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed Parvees, M.Y., Abdul Samath, J. & Parameswaran Bose, B. Medical Images are Safe – an Enhanced Chaotic Scrambling Approach. J Med Syst 41, 167 (2017). https://doi.org/10.1007/s10916-017-0809-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-017-0809-1

Keywords

Navigation