Abstract
Resistance to antiretrovirals (ARVs) is a major problem faced by HIV-infected individuals. Different rule-based algorithms were developed to infer HIV-1 susceptibility to antiretrovirals from genotypic data. However, there is discordance between them, resulting in difficulties for clinical decisions about which treatment to use. Here, we developed ensemble classifiers integrating three interpretation algorithms: Agence Nationale de Recherche sur le SIDA (ANRS), Rega, and the genotypic resistance interpretation system from Stanford HIV Drug Resistance Database (HIVdb). Three approaches were applied to develop a classifier with a single resistance profile: stacked generalization, a simple plurality vote scheme and the selection of the interpretation system with the best performance. The strategies were compared with the Friedman’s test and the performance of the classifiers was evaluated using the F-measure, sensitivity and specificity values. We found that the three strategies had similar performances for the selected antiretrovirals. For some cases, the stacking technique with naïve Bayes as the learning algorithm showed a statistically superior F-measure. This study demonstrates that ensemble classifiers can be an alternative tool for clinical decision-making since they provide a single resistance profile from the most commonly used resistance interpretation systems.
This is a preview of subscription content, access via your institution.


References
Paredes, R., and Clotet, B., Clinical management of HIV-1 resistance. Antivir. Res. 85:245–265, 2010. https://doi.org/10.1016/j.antiviral.2009.09.015.
Bronze, M., Steegen, K., Wallis, C.L., de Wolf, H., Papathanasopoulos, M.A., van Houtte, M., Stevens, W.S., de Wit, T.R., and Stuyver, L.J., Hiv-1 phenotypic reverse transcriptase inhibitor drug resistance test interpretation is not dependent on the subtype of the virus backbone. PLoS One, 2012. https://doi.org/10.1371/journal.pone.0034708.
Hertogs, K., de Béthune, M.P., Miller, V., Ivens, T., Schel, P., Van Cauwenberge, A., Van Den Eynde, C., Van Gerwen, V., Azijn, H., Van Houtte, M., Peeters, F., Staszewski, S., Conant, M., Bloor, S., Kemp, S., Larder, B., and Pauwels, R., A rapid method for simultaneous detection of phenotypic resistance to inhibitors of protease and reverse transcriptase in recombinant human immunodeficiency virus type 1 isolates from patients treated with antiretroviral drugs. Antimicrob. Agents Chemother. 42:269–276, 1998.
Beerenwinkel, N., Schmidt, B., Walter, H., Kaiser, R., Lengauer, T., Hoffmann, D., Korn, K., and Selbig, J., Diversity and complexity of HIV-1 drug resistance: A bioinformatics approach to predicting phenotype from genotype. Proc. Natl. Acad. Sci. U. S. A. 99:8271–8276, 2002. https://doi.org/10.1073/pnas.112177799.
Vercauteren, J., and Vandamme, A.M., Algorithms for the interpretation of HIV-1 genotypic drug resistance information. Antivir. Res. 71:335–342, 2006. https://doi.org/10.1016/j.antiviral.2006.05.003.
Ravela, J., Betts, B.J., Brun-Vézinet, F., Vandamme, A.-M., Descamps, D., van Laethem, K., Smith, K., Schapiro, J.M., Winslow, D.L., Reid, C., and Shafer, R.W., HIV-1 protease and reverse transcriptase mutation patterns responsible for discordances between genotypic drug resistance interpretation algorithms. J. Acquir. Immune Defic. Syndr. 33:8–14, 2003.
De Luca, A., Cingolani, A., Di Giambenedetto, S., Trotta, M.P., Baldini, F., Rizzo, M.G., Bertoli, A., Liuzzi, G., Narciso, P., Murri, R., Ammassari, A., Perno, C.F., and Antinori, A., Variable prediction of antiretroviral treatment outcome by different systems for interpreting genotypic human immunodeficiency virus type 1 drug resistance. J. Infect. Dis. 183:1934–1943, 2003. https://doi.org/10.1086/375355.
Yebra, G., de Mulder, M., del Romero, J., Rodríguez, C., and Holguín, A., HIV-1 non-B subtypes: High transmitted NNRTI-resistance in Spain and impaired genotypic resistance interpretation due to variability. Antivir. Res. 85:409–417, 2010. https://doi.org/10.1016/j.antiviral.2009.11.010.
Zazzi, M., Romano, L., Venturi, G., Shafer, R.W., Reid, C., Dal Bello, F., Parolin, C., Palù, G., and Valensin, P.E., Comparative evaluation of three computerized algorithms for prediction of antiretroviral susceptibility from HIV type 1 genotype. J. Antimicrob. Chemother. 53:356–360, 2004. https://doi.org/10.1093/jac/dkh021.
Meynard, J.-L., Vray, M., Morand-Joubert, L., Race, E., Descamps, D., Peytavin, G., Matheron, S., Lamotte, C., Guiramand, S., Costagliola, D., Brun-Vézinet, F., Clavel, F., and Girard, P.-M., Phenotypic or genotypic resistance testing for choosing antiretroviral therapy after treatment failure: A randomized trial. AIDS. 16:727–736, 2002.
Van Laethem, K., De Luca, A., Antinori, A., Cingolani, A., Perno, C.F., and Vandamme, A.M., A genotypic drug resistance interpretation algorithm that significantly predicts therapy response in HIV-1-infected patients. Antivir. Ther. 7:123–129, 2002.
Shafer, R.W., Genotypic testing for human immunodeficiency virus type 1 drug resistance. Society. 15:247–277, 2002. https://doi.org/10.1128/CMR.15.2.247.
Yashik, S., and Maurice, M., Predicting a single HIV drug resistance measure from three international interpretation gold standards. Asian Pac. J. Trop. Med. 5:566–572, 2012. https://doi.org/10.1016/S1995-7645(12)60100-X.
Wagner, S., Kurz, M., and Klimkait, T., Algorithm evolution for drug resistance prediction: Comparison of systems for HIV-1 genotyping. Antivir. Ther. 20:661–665, 2015. https://doi.org/10.3851/IMP2947.
Cunha, P., Moura, D.C., Guevara López, M.A., Guerra, C., Pinto, D., and Ramos, I., Impact of ensemble learning in the assessment of skeletal maturity. J. Med. Syst. 38:87, 2014. https://doi.org/10.1007/s10916-014-0087-0.
Whalen, S., Pandey, G., A comparative analysis of ensemble classifiers: Case studies in genomics. In: 2013 I.E. 13th Int. Conf. Data Min. IEEE, pp 807–816, 2013.
Heider, D., Dybowski, J.N., Wilms, C., and Hoffmann, D., A simple structure-based model for the prediction of HIV-1 co-receptor tropism. BioData Min. 7:14, 2014. https://doi.org/10.1186/1756-0381-7-14.
Dybowski, J.N., Riemenschneider, M., Hauke, S., Pyka, M., Verheyen, J., Hoffmann, D., and Heider, D., Improved Bevirimat resistance prediction by combination of structural and sequence-based classifiers. BioData Min. 4:26, 2011. https://doi.org/10.1186/1756-0381-4-26.
Kilic, N., Hosgormez, E., Automatic Estimation of Osteoporotic Fracture Cases by Using Ensemble Learning Approaches. 40:61, 2016. doi: https://doi.org/10.1007/s10916-015-0413-1
Rhee, S.-Y., Gonzales, M.J., Kantor, R., Betts, B.J., Ravela, J., and Shafer, R.W., Human immunodeficiency virus reverse transcriptase and protease sequence database. Nucleic Acids Res. 31:298–303, 2003. https://doi.org/10.1093/nar/gkg100.
Monogram Biosciences., Phenosense HIV Drug Resistance Assay. 1–2, 2014.
He, H., and Garcia, E.A., Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21:1263–1284, 2009. https://doi.org/10.1109/TKDE.2008.239.
Lunardon, N., Menardi, G., Maintainer, N. T., Package “ROSE.” 6, 2015.
Džeroski, S., and Ženko, B., Is combining classifiers with stacking better than selecting the best one? Mach. Learn. 54:255–273, 2004. https://doi.org/10.1023/B:MACH.0000015881.36452.6e.
Rokach, L., Ensemble methods for classifiers. Data Min. Knowl. Discov. Handb.:957–980, 2005. https://doi.org/10.1007/0-387-25465-X_45.
Wolpert, D.H., Stacked generalization. Neural Netw. 5:241–259, 1992. https://doi.org/10.1016/S0893-6080(05)80023-1.
Gr, S.D., Paliouras, G., Spyropoulos, C.D., Gr, C.D., and Gr, M.U., Combining information extraction systems using voting and stacked generalization Georgios Sigletos Georgios Paliouras. J. Mach. Learn. Res. 6:1751–1782, 2005.
Ting, K. M., and Witten, I. H., Stacked generalization: When does it work? 866–871, 1997.
Leung, K. M., Naive bayesian classifier. Polytech. Univ. Dep. Comput. Sci. Risk Eng, 2007.
Tan, S., Neighbor-weighted K-nearest neighbor for unbalanced text corpus. Expert Syst. Appl. 28:667–671, 2005. https://doi.org/10.1016/j.eswa.2004.12.023.
Kuhn, M., Package “caret.” 151,156, 2016.
Roever, C., Raabe, N., Luebke, K., Ligges, U., Szepannek, G., and Zentgraf, M., Package “klaR.” 33, 2015.
Schliep, K., Hechenbichler, K., and Lizee, A., Package “kknn.” 2016 5.
Demšar, J., Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7:1–30, 2006.
Holm, S., A simple sequentially Rejective multiple test procedure. Scand. J. Stat. 6:65–70, 1979.
Beerenwinkel, N., D Umer, M., Oette, M., Korn, K., Hoffmann, D., Kaiser, R., Lengauer, T., Selbig, J., and Walter, H., Geno2pheno: Estimating phenotypic drug resistance from HIV-1 genotypes. Nucleic Acids Res. 31:3850–3855, 2003. https://doi.org/10.1093/nar/gkg575.
Vergne, L., Snoeck, J., Aghokeng, A., Maes, B., Valea, D., Delaporte, E., Vandamme, A.M., Peeters, M., and Van Laethem, K., Genotypic drug resistance interpretation algorithms display high levels of discordance when applied to non-B strains from HIV-1 naive and treated patients. FEMS Immunol. Med. Microbiol. 46:53–62, 2006. https://doi.org/10.1111/j.1574-695X.2005.00011.x.
Poonpiriya, V., Sungkanuparph, S., Leechanachai, P., Pasomsub, E., Watitpun, C., Chunhakan, S., and Chantratita, W., A study of seven rule-based algorithms for the interpretation of HIV-1 genotypic resistance data in Thailand. J. Virol. Methods. 151:79–86, 2008. https://doi.org/10.1016/j.jviromet.2008.03.017.
Weiss, G. M., Provost, F., The effect of class distribution on classifier learning, 2001
Japkowicz, N., Learning from imbalanced data sets: A comparison of various strategies. In: Work. Notes AAAI’00 work. pp 10–15, 2000.
Estabrooks, A., Jo, T., and Japkowicz, N., A multiple resampling method for learning from imbalanced data sets. Comput. Intell. 20:18–36, 2004. https://doi.org/10.1111/j.0824-7935.2004.t01-1-00228.x.
Snoeck, J., Kantor, R., Shafer, R.W., Van Laethem, K., Deforche, K., Carvalho, A.P., Wynhoven, B., Soares, M.A., Cane, P., Clarke, J., Pillay, C., Sirivichayakul, S., Ariyoshi, K., Holguin, A., Rudich, H., Rodrigues, R., Bouzas, M.B., Brun-Vézinet, F., Reid, C., Cahn, P., Brigido, L.F., Grossman, Z., Soriano, V., Sugiura, W., Phanuphak, P., Morris, L., Weber, J., Pillay, D., Tanuri, A., Harrigan, R.P., Camacho, R., Schapiro, J.M., Katzenstein, D., and Vandamme, A.M., Discordances between interpretation algorithms for genotypic resistance to protease and reverse transcriptase inhibitors of human immunodeficiency virus are subtype dependent. Antimicrob. Agents Chemother. 50:694–701, 2006. https://doi.org/10.1128/AAC.50.2.694-701.2006.
Acknowledgements
We want to acknowledge FAPERJ (Carlos Chagas Filho Foundation for Research Support of the State of Rio de Janeiro), CNPq Brazil (National Counsel of Technological and Scientific Development) and CAPES (Coordination for the Improvement of Higher-Education Personnel) for the financial support provided for this research.
Funding
Letícia Raposo is funded by Carlos Chagas Filho Foundation for Research Support of the State of Rio de Janeiro (FAPERJ, grant 221,340) and was funded by National Counsel of Technological and Scientific Development (CNPq Brazil, grant 131,968/2012–2).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
The authors declare that they have no conflict of interest.
Ethical Approval
This article does not contain any studies with human participants or animals performed by any of the authors.
Additional information
This article is part of the Topical Collection on Systems-Level Quality Improvement
Rights and permissions
About this article
Cite this article
Raposo, L.M., Nobre, F.F. Ensemble Classifiers for Predicting HIV-1 Resistance from Three Rule-Based Genotypic Resistance Interpretation Systems. J Med Syst 41, 155 (2017). https://doi.org/10.1007/s10916-017-0802-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10916-017-0802-8