3D Digitization and Prototyping of the Skull for Practical Use in the Teaching of Human Anatomy

  • Maria Teresa Ugidos Lozano
  • Fernando Blaya Haro
  • Carlos Molino Diaz
  • Sadia Manzoor
  • Gonzalo Ferrer Ugidos
  • Juan Antonio Juanes Mendez
Education & Training
Part of the following topical collections:
  1. Latest Technology Trends in Health Sciences (TEEM 2016)


The creation of new rapid prototyping techniques, low cost 3D printers as well as the creation of new software for these techniques have allowed the creation of 3D models of bones making their application possible in the field of teaching anatomy in the faculties of Health Sciences. The 3D model of cranium created in the present work, at full scale, present accurate reliefs and anatomical details that are easily identifiable by undergraduate students in their use for the study of human anatomy. In this article, the process of scanning the skull and the subsequent treatment of these images with specific software until the generation of 3D model using 3D printer has been reported.


3D printing Teaching anatomy Cranium Rapid prototyping 


Compliance with Ethical Standards

Informed consent

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

There is no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Yammine, K., and Violato, C., A meta-analysis of the educational effectiveness of three-dimensional visualization technologies in teaching anatomy. Anat. Sci. Educ. 8:525–538, 2015. doi: 10.1002/ase.1510.
  2. 2.
    Khot, Z., Quinlan, K., Norman, G. R., and Wainman, B., The relative effectiveness of computer-based and traditional resources for education in anatomy. Anat. Sci. Educ. 6: 211–215, 2013. doi: 10.1002/ase.1355.
  3. 3.
    Cornwall, J., and Pollard, M. F., Evaluation of free i-applications for tertiary level gross anatomy education. The Australasian Medical Journal 5:239–242, 2012. doi: 10.4066/AMJ.2012.1249.
  4. 4.
    Juanes, J. A., Hernández, D., Ruisoto, P., García, E., Villarrubia, G., and Prats, A., Augmented reality techniques, using mobile devices, for learning human anatomy. In: Proceedings of the Second International Conference on Technological Ecosystems for Enhancing Multiculturality (pp. 7–11). ACM: New York, NY, 2014. doi: 10.1145/2669711.2669870.
  5. 5.
    Turney, B., Anatomy in a modern medical curriculum. Ann. R. Coll. Surg. Engl. 89:104–107. doi: 10.1308/003588407X168244 2007.
  6. 6.
    Biasutto, S. N., Ignacio Caussa, L., and Esteban Criado del Río, L., Teaching anatomy: Cadavers vs. computers? Annals of Anatomy - Anatomischer Anzeiger 188:187–190, 2006. doi: 10.1016/j.aanat.2005.07.007.
  7. 7.
    Baskaran, V., Štrkalj, G., Štrkalj, M., and Di Ieva, A., Current applications and future perspectives of the use of 3D printing in anatomical training and neurosurgery. Front. Neuroanat. 10, 2016. doi: 10.3389/fnana.2016.00069.
  8. 8.
    McGurk, M., Amis, A. A., Potamianos, P., and Goodger, N. M., Rapid prototyping techniques for anatomical modelling in medicine. Ann. R. Coll. Surg. Engl. 79:169–174, 1997.Google Scholar
  9. 9.
    Collipal Larre, E., and Silva Mella, H., Estudio de la Anatomía en Cadáver y Modelos Anatómicos: Impresión de los Estudiantes. Int. J. Morphol. 29:1181–1185, 2011. doi: 10.4067/S0717-95022011000400018.
  10. 10.
    Rodríguez Ruiz, H. M., Mendoza, D. Z. U., and Gualdrón, A. J., Conocimientos, sentidos y actitudes en relación con la anatomía en estudiantes de segundo año de Medicina. Universidad Nacional de Colombia. 2009. Rev. Fac. Med. 58:4, 2010.Google Scholar
  11. 11.
    Azer, S. A., and Eizenberg, N., Do we need dissection in an integrated problem-based learning medical course? Perceptions of first- and second-year students. Surg. Radiol. Anat. 29:173–180, 2007. doi. 10.1007/s00276-007-0180-x.
  12. 12.
    Villarroel Guerra, M., and Medina Otazo, E., Técnica Anatómica para Restaurar y/o Reproducir Piezas Óseas Humanas de Difícil Obtención, para la Investigación y Docencia Científica. Int. J. Morphol. 29:532–536, 2011. doi: 10.4067/S0717-95022011000200038.
  13. 13.
    Babinski, M. A., Sgrott, E. A., Luz, H. P., Brasil, F. B., Chagas, M. A., and Abidu-Figueiredo, M., LA RELACIÓN DE LOS ESTUDIANTES CON EL CADÁVER EN EL ESTUDIO PRÁCTICO DE ANATOMÍA: LA REACCIÓN E INFLUENCIA EN EL APRENDIZAJE. Int. J. Morphol. 21:137–142, 2003. doi: 10.4067/S0717-95022003000200007
  14. 14.
    McLachlan, J. C., Bligh, J., Bradley, P., and Searle, J., Teaching anatomy without cadavers. Med. Educ. 38:418–424, 2004.doi: 10.1046/j.1365-2923.2004.01795.x.
  15. 15.
    Brenton, H., Hernandez, J., Bello, F., Strutton, P., Purkayastha, S., Firth, T., and Darzi, A., Using multimedia and Web3D to enhance anatomy teaching. Comput. Educ. 49: 32–53, 2007. doi: 10.1016/j.compedu.2005.06.005.
  16. 16.
    Petzold, R., Zeilhofer, H.-F., and Kalender, W. A., Rapid prototyping technology in medicine—basics and applications. Comput. Med. Imaging Graph. 23:277–284, 1999. doi: 10.1016/S0895-6111(99)00025-7
  17. 17.
    Petrovic, V., Gonzalez, J. V. H., Ferrando, O. J., Gordillo, J. D., Puchades, J. R. B., and Griñan, L. P., Additive layered manufacturing: Sectors of industrial application shown through case studies. Int. J. Protein Res. 49:1061–1079, 2011. doi: 10.1080/00207540903479786.
  18. 18.
    Nogueira, B. A. P., Utilización del prototipado rápido en la odontología. Revista Estomatológica Herediana 25(2), 2016. Retrieved from
  19. 19.
    Arcaute, K., Mann, B. K., and Wicker, R. B., Stereolithography of three-dimensional bioactive poly(Ethylene Glycol) constructs with encapsulated cells. Ann. Biomed. Eng. 34:1429–1441, 2006. doi: 10.1007/s10439-006-9156-y.
  20. 20.
    Cohen, A., Laviv, A., Berman, P., Nashef, R., and Abu-Tair, J., Mandibular reconstruction using stereolithographic 3-dimensional printing modeling technology. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 108:661–666, 2009. doi: 10.1016/j.tripleo.2009.05.023
  21. 21.
    El-Katatny, I., Masood, S. h., and Morsi, Y. s., Error analysis of FDM fabricated medical replicas. Rapid Prototyp. J. 16:36–43, 2010. doi: 10.1108/13552541011011695.
  22. 22.
    Kondo, K., Nemoto, M., Masuda, H., Okonogi, S., Nomoto, J., Harada, N., Miyazaki, C., Anatomical reproducibility of a head model molded by a three-dimensional printer. Neurol. Med. Chir. 55:592–598, 2015. doi: 10.2176/nmc.oa.2014-0436
  23. 23.
    Berman, B., 3-D printing: The new industrial revolution. Bus. Horiz. 55:155–162, 2012. doi: 10.1016/j.bushor.2011.11.003.
  24. 24.
    Jose, R. R., Rodriguez, M. J., Dixon, T. A., Omenetto, F., and Kaplan, D. L., Evolution of bioinks and additive manufacturing technologies for 3D bioprinting. ACS Biomater Sci. Eng., 2016 doi: 10.1021/acsbiomaterials.6b00088.
  25. 25.
    Wang, C., Tang, Z., Zhao, Y., Yao, R., Li, L., and Sun, W., Three-dimensional in vitro cancer models: A short review. Biofabrication, 6:022001, 2014. doi: 10.1088/1758-5082/6/2/022001.
  26. 26.
    Wu, W., Zheng, Q., Guo, X., and Huang, W., The controlled-releasing drug implant based on the three dimensional printing technology: Fabrication and properties of drug releasing in vivo. Journal of Wuhan University of Technology-Mater. Sci. Ed. 24:977, 2009. doi: 10.1007/s11595-009-6977-1.
  27. 27.
    Chia, H. N., and Wu, B. M., Recent advances in 3D printing of biomaterials. Journal of Biological Engineering 9:4, 2015. doi: 10.1186/s13036-015-0001-4.
  28. 28.
    Seitz, H., Rieder, W., Irsen, S., Leukers, B., and Tille, C., Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. J. Biomed. Mater. Res. B Appl. Biomater. 74B:782–788, 2005. doi: 10.1002/jbm.b.30291.
  29. 29.
    Sherwood, J. K., Riley, S. L., Palazzolo, R., Brown, S. C., Monkhouse, D. C., Coates, M., … Ratcliffe, A., A three-dimensional osteochondral composite scaffold for articular cartilage repair. Biomaterials 23:4739–4751, 2002. doi: 10.1016/S0142-9612(02)00223-5
  30. 30.
    Santos, C. F. L., Silva, A. P., Lopes, L., Pires, I., & Correia, I. J., Design and production of sintered β-tricalcium phosphate 3D scaffolds for bone tissue regeneration. Mater. Sci. Eng. C 32:1293–1298, 2012. doi: 10.1016/j.msec.2012.04.010.
  31. 31.
    Inzana, J. A., Olvera, D., Fuller, S. M., Kelly, J. P., Graeve, O. A., Schwarz, E. M., … Awad, H. A., 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials 35:4026–4034, 2014. doi: 10.1016/j.biomaterials.2014.01.064.
  32. 32.
    Visscher, D. O., Farré-Guasch, E., Helder, M. N., Gibbs, S., Forouzanfar, T., van Zuijlen, P. P., and Wolff, J., Advances in bioprinting technologies for craniofacial reconstruction. Trends Biotechnol. 34:700–710, 2016.doi: 10.1016/j.tibtech.2016.04.001.
  33. 33.
    Kurenov, S. N., Ionita, C., Sammons, D., and Demmy, T. L., Three-dimensional printing to facilitate anatomic study, device development, simulation, and planning in thoracic surgery. J. Thorac. Cardiovasc. Surg. 149:973–979.e1, 2015. doi: 10.1016/j.jtcvs.2014.12.059.
  34. 34.
    Mulford, J. S., Babazadeh, S., and Mackay, N., Three-dimensional printing in orthopaedic surgery: Review of current and future applications. ANZ J. Surg.2016.doi: 10.1111/ans.13533.
  35. 35.
    Marro, A., Bandukwala, T., and Mak, W., Three-dimensional printing and medical imaging: A review of the methods and applications. Curr. Probl. Diagn. Radiol. 45:2–9, 2016. doi: 10.1067/j.cpradiol.2015.07.009.
  36. 36.
    Alencar, B., Nogueira, P., Roque-Torres, G. D., Meneses-López, A., Bóscolo, F. N., Almeida, D., … Groppo, F. C., Utilización del prototipado rápido en la odontología. Revista Estomatológica Herediana, 25:167–174, 2015.Google Scholar
  37. 37.
    Lee, C. H., Hajibandeh, J., Suzuki, T., Fan, A., Shang, P., and Mao, J. J., Three-dimensional printed multiphase scaffolds for regeneration of periodontium complex. Tissue Eng. Part A, 20:1342–1351, (2013). doi: 10.1089/ten.tea.2013.0386.
  38. 38.
    Carter, S.-S. D., Costa, P. F., Vaquette, C., Ivanovski, S., Hutmacher, D. W., and Malda, J., Additive biomanufacturing: An advanced approach for periodontal tissue regeneration. Ann. Biomed. Eng. 45:12–22, 2017. doi: 10.1007/s10439-016-1687-2.
  39. 39.
    Darwood, A., Collier, J., Joshi, N., Grant, W. E., Sauret-Jackson, V., Richards, R., … Kirkpatrick, N., Re-thinking 3D printing: A novel approach to guided facial contouring. J. Cranio-Maxillofac. Surg. 43:1256–1260, 2015. doi: 10.1016/j.jcms.2015.06.001.
  40. 40.
    Yu, H., Shen, S. G., Wang, X., Zhang, L., and Zhang, S., The indication and application of computer-assisted navigation in oral and maxillofacial surgery—Shanghai’s experience based on 104 cases. J. Cranio-Maxillofac. Surg. 41:770–774, 2013. doi: 10.1016/j.jcms.2013.01.016.
  41. 41.
    Fahmy, M. D., Jazayeri, H. E., Razavi, M., Masri, R., and Tayebi, L., Three-dimensional bioprinting materials with potential application in preprosthetic surgery. Journal of Prosthodontics 25:310–318, 2016. doi: 10.1111/jopr.12431.
  42. 42.
    Pujol, S., Baldwin, M., Nassiri, J., Kikinis, R., and Shaffer, K., Using 3D modeling techniques to enhance teaching of difficult anatomical concepts. Acad. Radiol. 23:507–516, 2016. doi: 10.1016/j.acra.2015.12.012.
  43. 43.
    McMenamin, P. G., Quayle, M. R., McHenry, C. R., and Adams, J. W., The production of anatomical teaching resources using three-dimensional (3D) printing technology. Anat. Sci. Educ. 7:479–486, 2014. doi: 10.1002/ase.1475.
  44. 44.
    Lim, K. H. A., Loo, Z. Y., Goldie, S. J., Adams, J. W., and McMenamin, P. G., Use of 3D printed models in medical education: A randomized control trial comparing 3D prints versus cadaveric materials for learning external cardiac anatomy. Anat. Sci. Educ. 9:213–221, 2016. doi: 10.1002/ase.1573.

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Maria Teresa Ugidos Lozano
    • 1
  • Fernando Blaya Haro
    • 2
  • Carlos Molino Diaz
    • 2
  • Sadia Manzoor
    • 3
  • Gonzalo Ferrer Ugidos
    • 4
  • Juan Antonio Juanes Mendez
    • 1
  1. 1.Universidad de SalamancaSalamancaSpain
  2. 2.Universidad Politécnica de MadridMadridSpain
  3. 3.Universidad Complutense de MadridMadridSpain
  4. 4.Universidad Europea de MadridMadridSpain

Personalised recommendations