Skip to main content

Advertisement

Log in

A Critical Review for Developing Accurate and Dynamic Predictive Models Using Machine Learning Methods in Medicine and Health Care

  • Systems-Level Quality Improvement
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Recently, Artificial Intelligence (AI) has been used widely in medicine and health care sector. In machine learning, the classification or prediction is a major field of AI. Today, the study of existing predictive models based on machine learning methods is extremely active. Doctors need accurate predictions for the outcomes of their patients’ diseases. In addition, for accurate predictions, timing is another significant factor that influences treatment decisions. In this paper, existing predictive models in medicine and health care have critically reviewed. Furthermore, the most famous machine learning methods have explained, and the confusion between a statistical approach and machine learning has clarified. A review of related literature reveals that the predictions of existing predictive models differ even when the same dataset is used. Therefore, existing predictive models are essential, and current methods must be improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Qureshi, K. N., Abdullah, A. H., and Anwar, R. W., Wireless sensor based hybrid architecture for vehicular ad hoc networks, TELKOMNIKA (Telecommunication Computing Electronics and Control), vol. 12, pp. 942–949, 2014.

  2. Qureshi, K.N., and Abdullah, A.H., Localization-based system challenges in vehicular ad hoc networks: survey. Smart Computing Review. 4:515–528, 2014.

    Google Scholar 

  3. Qureshi, K.N., and Abdullah, A.H., Adaptation of wireless sensor network in industries and their architecture, standards and applications. World Applied Sciences Journal. 30:1218–1223, 2014.

    Google Scholar 

  4. Signorini, D.F., Andrews, P.J., Jones, P.A., Wardlaw, J.M., and Miller, J.D., Predicting survival using simple clinical variables: a case study in traumatic brain injury. J. Neurol. Neurosurg. Psychiatry. 66:20–25, 1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Komninos, N., Intelligent cities: towards interactive and global innovation environments. International Journal of Innovation and Regional Development. 1:337–355, 2009.

    Article  Google Scholar 

  6. Nilsson, N. J. (2014). Principles of artificial intelligence. Burlington, MA, Morgan Kaufmann.

  7. Charniak, E., Riesbeck, C. K., McDermott, D. V., and Meehan, J. R., Artificial intelligence programming: Psychology Press, 2014.

  8. Kumar, G., Kumar, K., and Sachdeva, M., The use of artificial intelligence based techniques for intrusion detection: a review. Artif. Intell. Rev. 34:369–387, 2010.

    Article  Google Scholar 

  9. Bratko, I., Michalski, R. S., and Kubat, M., Machine learning and data mining: methods and applications, 1999.

  10. Michie, D., Spiegelhalter, D. J., and Taylor, C. C., Machine learning, neural and statistical classification, 1994.

  11. Mitchell, T., The role of unlabeled data in supervised learning, in Proceedings of the sixth international colloquium on cognitive science, 1999, pp. 2–11.

  12. Shavlik, J. W. and Dietterich T. G., Readings in machine learning: Morgan Kaufmann, 1990.

  13. Bratko, I., Mozetič, I., and Lavrač, N., KARDIO: a study in deep and qualitative knowledge for expert systems: MIT Press, 1990.

  14. Beca, J., Cox, P., Taylor, M., Bohn, D., Butt, W., Logan, W., et al., Somatosensory evoked potentials for prediction of outcome in acute severe brain injury. J. Pediatr. 126:44–49, 1995.

    Article  CAS  PubMed  Google Scholar 

  15. Alanazi, H.O., Abdullah, A.H., and Al Juma, M., A critical review for an accurate and dynamic prediction for the outcomes of traumatic brain injury based on Glasgow outcome scale. J. Med. Sci. 13:244, 2013.

    Article  Google Scholar 

  16. Agrawal, D., A comprehensive study of data mining and application, International Journal of Advanced Research in Computer Engineering & Technology (IJARCET), vol. 2, pp. pp: 249–252, 2013.

  17. Jackson, J., Data mining; a conceptual overview. Commun. Assoc. Inf. Syst. 8:19, 2002.

    Google Scholar 

  18. Maojo, V. and Sanandrés, J., A survey of data mining techniques, In International Symposium on Medical Data Analysis, 2000, pp. 17–22.

  19. McDonald, C., Machine learning: a survey of current techniques. Artif. Intell. Rev. 3:243–280, 1989.

    Article  Google Scholar 

  20. Villalba, S.D., and Cunningham, P., An evaluation of dimension reduction techniques for one-class classification. Artif. Intell. Rev. 27:273–294, 2007.

    Article  Google Scholar 

  21. Shekhar, S., Schrater, P.R., Vatsavai, R.R., Wu, W., and Chawla, S., Spatial contextual classification and prediction models for mining geospatial data. IEEE Trans. Multimedia. 4:174–188, 2002.

    Article  Google Scholar 

  22. Kotsiantis, S.B., Zaharakis, I.D., and Pintelas, P.E., Machine learning: a review of classification and combining techniques. Artif. Intell. Rev. 26:159–190, 2006.

    Article  Google Scholar 

  23. Juhola, M., and Laurikkala, J., Missing values: how many can they be to preserve classification reliability? Artif. Intell. Rev. 40:231–245, 2013.

    Article  Google Scholar 

  24. Loh, W.Y., Classification and regression trees. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 1:14–23, 2011.

    Google Scholar 

  25. Izeboudjen, N., Larbes, C., and Farah, A., A new classification approach for neural networks hardware: from standards chips to embedded systems on chip. Artif. Intell. Rev. 41:491–534, 2014.

    Article  Google Scholar 

  26. Haykin, S.S., Kalman filtering and neural networks. Online Library, Wiley, 2001.

    Book  Google Scholar 

  27. Cortes, C., and Vapnik, V., Support-vector networks. Mach. Learn. 20:273–297, 1995.

    Google Scholar 

  28. Weinberger, K. Q., Sha, F., and Saul, L. K., Learning a kernel matrix for nonlinear dimensionality reduction, In Proceedings of the twenty-first international conference on Machine learning, 2004, p. 106.

  29. Bhargavi, P., and Jyothi, S., Applying naive bayes data mining technique for classification of agricultural land soils. International journal of computer science and network security. 9:117–122, 2009.

    Google Scholar 

  30. Jordan, A., On discriminative vs. generative classifiers: a comparison of logistic regression and naive bayes. Adv. Neural Inf. Proces. Syst. 14:841, 2002.

    Google Scholar 

  31. Li, J. and Wong, L., Using rules to analyse bio-medical data: a comparison between C4. 5 and PCL, In International Conference on Web-Age Information Management, 2003, pp. 254–265.

  32. Freund, Y. and Mason, L., The alternating decision tree learning algorithm, In icml, 1999, pp. 124–133.

  33. Hosmer, D. W. Jr and Lemeshow, S., Applied logistic regression: Wiley, 2004.

  34. Pathak, A., Sehgal, M., and Christopher, D., A Study on Selective Data Mining Algorithms, International Journal of Computer Science Issues (IJCSI), vol. 8, 2011.

  35. Liu, Q., Cui, X., Abbod, M.F., Huang, S.-J., Han, Y.-Y., and Shieh, J.-S., Brain death prediction based on ensembled artificial neural networks in neurosurgical intensive care unit. J. Taiwan Inst. Chem. Eng. 42:97–107, 2011.

    Article  CAS  Google Scholar 

  36. Rughani, A.I., Dumont, T.M., Lu, Z., Bongard, J., Horgan, M.A., Penar, P.L., et al., Use of an artificial neural network to predict head injury outcome: clinical article. J. Neurosurg. 113:585–590, 2010.

    Article  PubMed  Google Scholar 

  37. Iselin, G., Le Brocque, R., Kenardy, J., Anderson, V., and McKinlay, L., Which method of posttraumatic stress disorder classification best predicts psychosocial function in children with traumatic brain injury? J. Anxiety Disord. 24:774–779, 2010.

    Article  PubMed  Google Scholar 

  38. Güler, I., Tunca, A., and Gülbandilar, E., Detection of traumatic brain injuries using fuzzy logic algorithm. Expert Systems with Applications. 34:1312–1317, 2008.

    Article  Google Scholar 

  39. Chen, Y.-W., Larbani, M., Hsieh, C.-Y., and Chen, C.-W., Introduction of affinity set and its application in data-mining example of delayed diagnosis. Expert Systems with Applications. 36:10883–10889, 2009.

    Article  Google Scholar 

  40. Wang, L., and Brown, S.J., BindN: a web-based tool for efficient prediction of DNA and RNA binding sites in amino acid sequences. Nucleic Acids Res. 34:W243–W248, 2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Aribisala, B. S., Cowie, C. J., He, J., Wood, J., Mendelow, A. D., Mitchell, P. et al., Multi-parametric classification of traumatic brain injury patients using automatic analysis of quantitative MRI scans, in International Workshop on Medical Imaging and Virtual Reality, 2010, pp. 51–59.

  42. Zhao, Y., Pinilla, C., Valmori, D., Martin, R., and Simon, R., Application of support vector machines for T-cell epitopes prediction. Bioinformatics. 19:1978–1984, 2003.

    Article  CAS  PubMed  Google Scholar 

  43. Low, D., Kuralmani, V., Ng, S.K., Lee, K.K., Ng, I., and Ang, B.T., Prediction of outcome utilizing both physiological and biochemical parameters in severe head injury. J. Neurotrauma. 26:1177–1182, 2009.

    Article  PubMed  Google Scholar 

  44. Choi, S.C., Muizelaar, J.P., Barnes, T.Y., Marmarou, A., Brooks, D.M., and Young, H.F., Prediction tree for severely head-injured patients. J. Neurosurg. 75:251–255, 1991.

    Article  CAS  PubMed  Google Scholar 

  45. A. McQuatt, P. Andrews, D. Sleeman, V. Corruble, and P. Jones, The analysis of head injury data using decision tree techniques, in Joint European Conference on Artificial Intelligence in Medicine and Medical Decision Making, 1999, pp. 336–345.

  46. Flemming, K.D., Wijdicks, E.F., and Li, H., Can we predict poor outcome at presentation in patients with lobar hemorrhage? Cerebrovasc. Dis. 11:183–189, 2001.

    Article  CAS  PubMed  Google Scholar 

  47. Kalpakis, K., Yang, S., Hu, P. F., Mackenzie, C. F., Stansbury, L. G., Stein, D. M., et al., Outcome prediction for patients with severe traumatic brain injury using permutation entropy analysis of electronic vital signs data, in International Workshop on Machine Learning and Data Mining in Pattern Recognition, 2012, pp. 415–426.

  48. Kuo, J.-R., Lo, C.-J., Lu, C.-L., Chio, C.-C., Wang, C.-C., and Lin, K.-C., Prognostic predictors of outcome in an operative series in traumatic brain injury patients. J. Formos. Med. Assoc. 110:258–264, 2011.

    Article  PubMed  Google Scholar 

  49. Pignolo, L., and Lagani, V., Prediction of outcome in the vegetative state by machine learning algorithms: a model for clinicians? J. Softw. Eng. Appl. 4:388, 2011.

    Article  Google Scholar 

  50. Sut, N., and Simsek, O., Comparison of regression tree data mining methods for prediction of mortality in head injury. Expert systems with applications. 38:15534–15539, 2011.

    Article  Google Scholar 

  51. Ji, S.-Y., Smith, R., Huynh, T., and Najarian, K., A comparative analysis of multi-level computer-assisted decision making systems for traumatic injuries. BMC Med. Inform. Decis. Mak. 9:1, 2009.

    Article  CAS  Google Scholar 

  52. Pang, B.C., Kuralmani, V., Joshi, R., Hongli, Y., Lee, K.K., Ang, B.T., et al., Hybrid outcome prediction model for severe traumatic brain injury. J. Neurotrauma. 24:136–146, 2007.

    Article  PubMed  Google Scholar 

  53. Mac Donald, C., Dikranian, K., Song, S., Bayly, P., Holtzman, D., and Brody, D., Detection of traumatic axonal injury with diffusion tensor imaging in a mouse model of traumatic brain injury. Exp. Neurol. 205:116–131, 2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Steyerberg, E.W., Mushkudiani, N., Perel, P., Butcher, I., Lu, J., McHugh, G.S., et al., Predicting outcome after traumatic brain injury: development and international validation of prognostic scores based on admission characteristics. PLoS Med. 5:e165, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Cremer, O.L., Moons, K.G., van Dijk, G.W., van Balen, P., and Kalkman, C.J., Prognosis following severe head injury: development and validation of a model for prediction of death, disability, and functional recovery. J. Trauma Acute Care Surg. 61:1484–1491, 2006.

    Article  Google Scholar 

  56. Amantini, A., Grippo, A., Fossi, S., Cesaretti, C., Piccioli, A., Peris, A., et al., Prediction of ‘awakening’and outcome in prolonged acute coma from severe traumatic brain injury: evidence for validity of short latency SEPs. Clin. Neurophysiol. 116:229–235, 2005.

    Article  PubMed  Google Scholar 

  57. Hukkelhoven, C.W., Steyerberg, E.W., Habbema, J.D.F., Farace, E., Marmarou, A., Murray, G.D., et al., Predicting outcome after traumatic brain injury: development and validation of a prognostic score based on admission characteristics. J. Neurotrauma. 22:1025–1039, 2005.

    Article  PubMed  Google Scholar 

  58. Newgard, C., Hedges, J., Stone, J., Lenfesty, B., Diggs, B., Arthur, M., et al., Derivation of a clinical decision rule to guide the interhospital transfer of patients with blunt traumatic brain injury. Emerg. Med. J. 22:855–860, 2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rovlias, A., and Kotsou, S., Classification and regression tree for prediction of outcome after severe head injury using simple clinical and laboratory variables. J. Neurosurg. 21:886–893, 2004.

    CAS  Google Scholar 

  60. Andrews, P.J., Sleeman, D.H., Statham, P.F., McQuatt, A., Corruble, V., Jones, P.A., et al., Predicting recovery in patients suffering from traumatic brain injury by using admission variables and physiological data: a comparison between decision tree analysis and logistic regression. J. Neurosurg. 97:326–336, 2002.

    Article  PubMed  Google Scholar 

  61. Lavrač, N., Selected techniques for data mining in medicine. Artif. Intell. Med. 16:3–23, 1999.

    Article  PubMed  Google Scholar 

  62. Kampfl, A., Schmutzhard, E., Franz, G., Pfausler, B., Haring, H.-P., Ulmer, H., et al., Prediction of recovery from post-traumatic vegetative state with cerebral magnetic-resonance imaging. The Lancet. 351:1763–1767, 1998.

    Article  CAS  Google Scholar 

  63. Lang, E.W., Pitts, L.H., Damron, S.L., and Rutledge, R., Outcome after severe head injury: an analysis of prediction based upon comparison of neural network versus logistic regression analysis. Neurol. Res. 19:274–280, 1997.

    Article  CAS  PubMed  Google Scholar 

  64. Combes, P., Fauvage, B., Colonna, M., Passagia, J., Chirossel, J., and Jacquot, C., Severe head injuries: an outcome prediction and survival analysis. Intensive Care Med. 22:1391–1395, 1996.

    Article  CAS  PubMed  Google Scholar 

  65. Choi, S.C., Barnes, T.Y., Bullock, R., Germanson, T.A., Marmarou, A., and Young, H.F., Temporal profile of outcomes in severe head injury. J. Neurosurg. 81:169–173, 1994.

    Article  CAS  PubMed  Google Scholar 

  66. Selladurai, B.M., Jayakumar, R., Tan, Y.Y., and Low, H.C., Outcome prediction in early management of severe head injury: an experience in Malaysia. Br. J. Neurosurg. 6:549–557, 1992.

    Article  CAS  PubMed  Google Scholar 

  67. Choi, S.C., Narayan, R.K., Anderson, R.L., and Ward, J.D., Enhanced specificity of prognosis in severe head injury. J. Neurosurg. 69:381–385, 1988.

    Article  CAS  PubMed  Google Scholar 

  68. Choi, S.C., Ward, J.D., and Becker, D.P., Chart for outcome prediction in severe head injury. J. Neurosurg. 59:294–297, 1983.

    Article  CAS  PubMed  Google Scholar 

  69. García-Borroto, M., Martínez-Trinidad, J.F., and Carrasco-Ochoa, J.A., A survey of emerging patterns for supervised classification. Artif. Intell. Rev. 42:705–721, 2014.

    Article  Google Scholar 

  70. Polat, H., Du, W., Renckes, S., and Oysal, Y., Private predictions on hidden Markov models. Artif. Intell. Rev. 34:53–72, 2010.

    Article  Google Scholar 

  71. Vink, J.P., and de Haan, G., Comparison of machine learning techniques for target detection. Artif. Intell. Rev. 43:125–139, 2015.

    Article  Google Scholar 

  72. Wang, L., Huang, C., Yang, M.Q., and Yang, J.Y., BindN+ for accurate prediction of DNA and RNA-binding residues from protein sequence features. BMC Syst. Biol. 4:1, 2010.

    Article  CAS  Google Scholar 

  73. Foody, G.M., and Mathur, A., The use of small training sets containing mixed pixels for accurate hard image classification: training on mixed spectral responses for classification by a SVM. Remote Sens. Environ. 103:179–189, 2006.

    Article  Google Scholar 

  74. Kim, H.-C., Pang, S., Je, H.-M., Kim, D., and Bang, S.Y., Constructing support vector machine ensemble. Pattern Recognit. 36:2757–2767, 2003.

    Article  Google Scholar 

  75. M. Li and I. K. Sethi, SVM-Based Classifier Design with Controlled Confidence, in ICPR (1), 2004, pp. 164–167.

  76. Li, M., and Sethi, I.K., Confidence-based classifier design. Pattern Recognit. 39:1230–1240, 2006.

    Article  Google Scholar 

  77. Li, Y.-C., Liu, L., Chiu, W.-T., and Jian, W.-S., Neural network modeling for surgical decisions on traumatic brain injury patients. Int. J. Med. Inform. 57:1–9, 2000.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This research is supported by Ministry of Education Higher Malaysia (MOHE) and conducted in collaboration with Research Management Center (RMC) at Universiti Teknologi Malaysia (UTM) under VOT NUMBER:R.J130000.7828.4F708.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kashif Naseer Qureshi.

Additional information

This article is part of the Topical Collection on Systems-Level Quality Improvement

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alanazi, H.O., Abdullah, A.H. & Qureshi, K.N. A Critical Review for Developing Accurate and Dynamic Predictive Models Using Machine Learning Methods in Medicine and Health Care. J Med Syst 41, 69 (2017). https://doi.org/10.1007/s10916-017-0715-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-017-0715-6

Keywords

Navigation