Skip to main content

Advertisement

Log in

Decision Support System for Detection of Papilledema through Fundus Retinal Images

  • Image & Signal Processing
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

A condition in which the optic nerve inside the eye is swelled due to increased intracranial pressure is known as papilledema. The abnormalities due to papilledema such as opacification of Retinal Nerve Fiber Layer (RNFL), dilated optic disc capillaries, blurred disc margins, absence of venous pulsations, elevation of optic disc, obscuration of optic disc vessels, dilation of optic disc veins, optic disc splinter hemorrhages, cotton wool spots and hard exudates may result in complete vision loss. The ophthalmologists detect papilledema by means of an ophthalmoscope, Computed Tomography (CT), Magnetic Resonance Imaging (MRI) and ultrasound. Rapid development of computer aided diagnostic systems has revolutionized the world. There is a need to develop such type of system that automatically detects the papilledema. In this paper, an automated system is presented that detects and grades the papilledema through analysis of fundus retinal images. The proposed system extracts 23 features from which six textural features are extracted from Gray-Level Co-occurrence Matrix (GLCM), eight features from optic disc margin obscuration, three color based features and seven vascular features are extracted. A feature vector consisting of these features is used for classification of normal and papilledema images using Support Vector Machine (SVM) with Radial Basis Function (RBF) kernel. The variations in retinal blood vessels, color properties, texture deviation of optic disc and its peripapillary region, and fluctuation of obscured disc margin are effectively identified and used by the proposed system for the detection and grading of papilledema. A dataset of 160 fundus retinal images is used which is taken from publicly available STARE database and local dataset collected from Armed Forces Institute of Ophthalmology (AFIO) Pakistan. The proposed system shows an average accuracy of 92.86% for classification of papilledema and normal images. It also shows an average accuracy of 97.85% for classification of already classified papilledema images into mild and severe papilledema. The proposed system is a novel step towards automated detection and grading of papilledema. The results showed that the technique is reliable and can be used as clinical decision support system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Tannenbaum, D.W., and Mandelcorn, M.S., Abnormalities of the optic fundus. Can. Fam. Physician. 36:729, 1990.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Ohle, R., McIsaac, S.M., Woo, M.Y., and Perry, J.J., Sonography of the optic nerve sheath diameter for detection of raised intracranial pressure compared to computed tomography a systematic review and meta-analysis. J. Ultrasound Med. 34:1285–1294, 2015.

    Article  PubMed  Google Scholar 

  3. Tallitsch R. B. , Martini F., and Timmons M. J., Human anatomy, ed: San Francisco: Pearson/Benjamin Cummings, 2006.

  4. Traboulsi E. I., Genetic diseases of the eye: Oxford University Press, 2011.

  5. Jonas, J.B., Budde, W.M., and Panda-Jonas, S., Ophthalmoscopic evaluation of the optic nerve head. Surv. Ophthalmol. 43:293–320, 1999.

    Article  CAS  PubMed  Google Scholar 

  6. Riordan-Eva, P., Clinical assessment of optic nerve disorders. Eye. 18:1161–1168, 2004.

    Article  CAS  PubMed  Google Scholar 

  7. Cameron, A.J., Marked papilloedema in pulmonary emphysema. Br. J. Ophthalmol. 17:167, 1933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Corbett, J.J., and Mehta, M., Cerebrospinal fluid pressure in normal obese subjects and patients with pseudotumor cerebri. Neurology. 33:1386–1386, 1983.

    Article  CAS  PubMed  Google Scholar 

  9. Wall, M., Idiopathic intracranial hypertension. Neurol. Clin. 28:593–617, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Jogi, R., Basic Ophthalmology: Jaypee Brothers Medical Publishers, 2009.

  11. Şahin, A., Cingü, A.K., Ari, Ş., Çinar, Y., and Çaça, İ., Bilateral optic disc drusen mimicking papilledema. J. Clin. Neurology. 8:151–154, 2012.

    Article  Google Scholar 

  12. Wall, M., and GEORGE, D., Idiopathic intracranial hypertension. Brain. 114:155–180, 1991.

    Article  PubMed  Google Scholar 

  13. Atta, H., Imaging of the optic nerve with standardised echography. Eye. 2:358–366, 1988.

    Article  PubMed  Google Scholar 

  14. Kurz-Levin, M.M., and Landau, K., A comparison of imaging techniques for diagnosing drusen of the optic nerve head. Arch. Ophthalmol. 117:1045–1049, 1999.

    Article  CAS  PubMed  Google Scholar 

  15. Alexander, L., Congenital and acquired anomalies of the optic nerve head, Primary Care of the Posterior Segment, pp. 1–68, 1994.

  16. Auw-Haedrich, C., Staubach, F., and Witschel, H., Optic disk drusen. Surv. Ophthalmol. 47:515–532, 2002.

    Article  PubMed  Google Scholar 

  17. Byrne, S. and Green, R., Ultrasound of the eye and orbit. Mosby, Inc., St. Louis, vol. 273, 2002.

  18. Schuman, J.S., Puliafito, C.A., Fujimoto, J.G., and Duker, J.S., Optical coherence tomography of ocular diseases. Slack Thorofare, NJ, 2004.

    Google Scholar 

  19. Wang, J.-K., Kardon, R.H., Kupersmith, M.J., and Garvin, M.K., Automated quantification of volumetric optic disc swelling in papilledema using spectral-domain optical coherence tomography volumetric quantification of optic disc swelling. Invest. Ophthalmol. Vis. Sci. 53:4069–4075, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Frisén, L., Swelling of the optic nerve head: a staging scheme. J. Neurol. Neurosurg. Psychiatry. 45:13–18, 1982.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Driessen, C., Eveleens, J., Bleyen, I., van Veelen, M.-L., Joosten, K., and Mathijssen, I., Optical coherence tomography: a quantitative tool to screen for papilledema in craniosynostosis. Childs Nerv. Syst. 30:1067–1073, 2014.

    PubMed  Google Scholar 

  22. Gabriele, M.L., Ishikawa, H., Wollstein, G., Bilonick, R.A., Kagemann, L., Wojtkowski, M., et al., Peripapillary nerve fiber layer thickness profile determined with high speed, ultrahigh resolution optical coherence tomography high-density scanning. Invest. Ophthalmol. Vis. Sci. 48:3154–3160, 2007.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Varma, R., Bazzaz, S., and Lai, M., Optical tomography–measured retinal nerve fiber layer thickness in normal Latinos. Invest. Ophthalmol. Vis. Sci. 44:3369–3373, 2003.

    Article  PubMed  Google Scholar 

  24. Turk, A., Ceylan, O.M., Arici, C., Keskin, S., Erdurman, C., Durukan, A.H., et al., Evaluation of the nerve fiber layer and macula in the eyes of healthy children using spectral-domain optical coherence tomography. Am J. Ophthalmol. 153:552–559. e1, 2012.

    Article  PubMed  Google Scholar 

  25. Leung, M.M., Huang, R.Y., and Lam, A.K., Retinal nerve fiber layer thickness in normal Hong Kong Chinese children measured with optical coherence tomography. J. Glaucoma. 19:95–99, 2010.

    Article  PubMed  Google Scholar 

  26. Yanni, S.E., Wang, J., Cheng, C.S., Locke, K.I., Wen, Y., Birch, D.G., et al., Normative reference ranges for the retinal nerve fiber layer, macula, and retinal layer thicknesses in children. Am. J. Ophthalmol. 155:354–360. e1, 2013.

    Article  PubMed  Google Scholar 

  27. El-Dairi, M.A., Asrani, S.G., Enyedi, L.B., and Freedman, S.F., Optical coherence tomography in the eyes of normal children. Arch. Ophthalmol. 127:50–58, 2009.

    Article  PubMed  Google Scholar 

  28. Prakalapakorn, S.G., Freedman, S.F., Lokhnygina, Y., Gandhi, N.G., Holgado, S., Chen, B.B., et al., Longitudinal reproducibility of optical coherence tomography measurements in children. Journal of American Association for Pediatric Ophthalmology and Strabismus. 16:523–528, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Nguyen, A., Balmitgere, T., Bernard, M., Tilikete, C., and Vighetto, A., Detection of mild papilloedema using spectral domain optical coherence tomography. Br. J. Ophthalmol. 96:375–379, 2012.

    Article  PubMed  Google Scholar 

  30. Ahuja, S., Anand, D., Dutta, T., Kumar, V.R., and Kar, S.S., Retinal nerve fiber layer thickness analysis in cases of papilledema using optical coherence tomography–a case control study. Clin. Neurol. Neurosurg. 136:95–99, 2015.

    Article  PubMed  Google Scholar 

  31. Scott, C.J., Kardon, R.H., Lee, A.G., Frisén, L., and Wall, M., Diagnosis and grading of papilledema in patients with raised intracranial pressure using optical coherence tomography vs clinical expert assessment using a clinical staging scale. Arch. Ophthalmol. 128:705–711, 2010.

    Article  PubMed  Google Scholar 

  32. Kaufhold, F., Kadas, E.M., Schmidt, C., Kunte, H., Hoffmann, J., Zimmermann, H., et al., Optic nerve head quantification in idiopathic intracranial hypertension by spectral domain OCT. PLoS One. 7:e36965, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Skau, M., Milea, D., Sander, B., Wegener, M., and Jensen, R., OCT for optic disc evaluation in idiopathic intracranial hypertension. Graefes Arch. Clin. Exp. Ophthalmol. 249:723–730, 2011.

    Article  PubMed  Google Scholar 

  34. Fatima, K. N., Akram, M. U., and Bazaz, S. A., Papilledema Detection in Fundus Images Using Hybrid Feature Set, in IT Convergence and Security (ICITCS), 2015 5th International Conference on, 2015, pp. 1–4.

  35. Echegaray, S., Zamora, G., Yu, H., Luo, W., Soliz, P., and Kardon, R., Automated analysis of optic nerve images for detection and staging of papilledema. Invest. Ophthalmol. Vis. Sci. 52:7470–7478, 2011.

    Article  PubMed  Google Scholar 

  36. Ekman, P., Levenson, R.W., and Friesen, W.V., Autonomic nervous system activity distinguishes among emotions. Science. 221:1208–1210, 1983.

    Article  CAS  PubMed  Google Scholar 

  37. Agne, J., Wang, J.-K., Kardon, R. H., and Garvin, M. K., Determining degree of optic nerve edema from color fundus photography, In SPIE Medical Imaging, 2015, pp. 94140F–94140F-9.

  38. Usman, A., Khitran, S. A., Akram, M. U., and Nadeem, Y., A robust algorithm for optic disc segmentation from colored fundus images, In International Conference Image Analysis and Recognition, 2014, pp. 303–310.

  39. Pizer, S.M., Amburn, E.P., Austin, J.D., Cromartie, R., Geselowitz, A., Greer, T., et al., Adaptive histogram equalization and its variations. Computer vision, graphics, and image processing. 39:355–368, 1987.

    Article  Google Scholar 

  40. Waheed, A., Akram, M.U., Khalid, S., Waheed, Z., Khan, M.A., and Shaukat, A., Hybrid features and Mediods classification based robust segmentation of blood vessels. J. Med. Syst. 39:1–14, 2015.

    Article  Google Scholar 

  41. Haralick, R. M. and Shanmugam, K., Textural features for image classification, IEEE Transactions on systems, man, and cybernetics, pp. 610–621, 1973.

  42. Lei, J., Wang, F. L., Deng, H., and Miao, D., Artificial Intelligence and Computational Intelligence: 4th International Conference, AICI 2012, Chengdu, China, October 26–28, 2012, Proceedings vol. 7530: Springer, 2012.

  43. Martínez-Pérez, M. E., Hughes, A. D., Stanton, A. V., Thom, S. A., Bharath, A. A., and Parker, K. H., Retinal blood vessel segmentation by means of scale-space analysis and region growing, in International Conference on Medical Image Computing and Computer-Assisted Intervention, 1999, pp. 90–97.

  44. Sussman, E.J., Tsiaras, W.G., and Soper, K.A., Diagnosis of diabetic eye disease. Jama. 247:3231–3234, 1982.

    Article  CAS  PubMed  Google Scholar 

  45. Keith, N.M., Wagener, H.P., and Barker, N.W., Some different types of essential hypertension: their course and prognosis. Am. J. Med. Sci. 197:332–343, 1939.

    Article  Google Scholar 

  46. Parr, J., and Spears, G., Mathematic relationships between the width of a retinal artery and the widths of its branches. Am. J. Ophthalmol. 77:478–483, 1974.

    Article  CAS  PubMed  Google Scholar 

  47. Salam, A.A., Khalil, T., Akram, M.U., Jameel, A., and Basit, I., Automated detection of glaucoma using structural and non structural features. Springer Plus. 5(1):1519, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  48. OD swelling annotations in STARE,http://cecas.clemson.edu/~ahoover/stare/manifestations/man19.htm

  49. Scott, C.J., Kardon, R.H., Lee, A.G., Frisén, L., and Wall, M., Diagnosis and grading of papilledema in patients with raised intracranial pressure using optical coherence tomography vs clinical expert assessment using a clinical staging scale. Arch Ophthalmol. 128(6):705–711, 2010.

    Article  PubMed  Google Scholar 

  50. Yousaf, K., Akram, M. U., Ali, U., Sheikh S. A., Assessment of papilledema using fundus images, IEEE International Conference and Imaging Systems and Techniques (IST), October 2016.

Download references

Acknowledgements

This research is being conducted under BIOMISA (www.biomisa.org) research group. The dataset is taken from Armed forces institute of ophthalmology (AFIO), Rawalpindi, Pakistan. The ophthalmologists from AFIO helped in annotation and validation of data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahzad Akbar.

Ethics declarations

Conflict of Interests

All the authors of this paper declare that there is no conflict of interests regarding the publication of this manuscript.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

This article is part of the Topical Collection on Image & Signal Processing

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbar, S., Akram, M.U., Sharif, M. et al. Decision Support System for Detection of Papilledema through Fundus Retinal Images. J Med Syst 41, 66 (2017). https://doi.org/10.1007/s10916-017-0712-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-017-0712-9

Keywords

Navigation