An HTML Tool for Production of Interactive Stereoscopic Compositions

Abstract

The benefits of stereoscopic vision in medical applications were appreciated and have been thoroughly studied for more than a century. The usage of the stereoscopic displays has a proven positive impact on performance in various medical tasks. At the same time the market of 3D-enabled technologies is blooming. New high resolution stereo cameras, TVs, projectors, monitors, and head mounted displays become available. This equipment, completed with a corresponding application program interface (API), could be relatively easy implemented in a system. Such complexes could open new possibilities for medical applications exploiting the stereoscopic depth. This work proposes a tool for production of interactive stereoscopic graphical user interfaces, which could represent a software layer for web-based medical systems facilitating the stereoscopic effect. Further the tool’s operation mode and the results of the conducted subjective and objective performance tests will be exposed.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Image-guided neurosurgery with 3-dimensional multimodal imaging data on a stereoscopic monitor. Neurosurgery. doi:10.1227/NEU.0b013e3182739aae (2013)

  2. 2.

    Bigelow, F. N., Liv. types of mastoid structure with special reference to their differentiation by means of stereoradiography. Ann. Otol. Rhinol. Laryngol. 27(3):887–939, 1918.

    Article  Google Scholar 

  3. 3.

    Brooke, J., et al., Sus-a quick and dirty usability scale. Usability evaluation in industry 189(194):4–7, 1996.

    Google Scholar 

  4. 4.

    Broy, N., Schneegass, S., Guo, M., Alt, F., Schmidt, A.: Evaluating Stereoscopic 3D for Automotive User Interfaces in a Real-World Driving Study. In: Proceedings of the 33rd Annual ACM Conference Extended Abstracts on Human Factors in Computing Systems - CHI EA ’15, pp. 1717–1722. ACM Press, New York, USA. doi:10.1145/2702613.2732902 (2015)

  5. 5.

    Case, J. T., The importance of stereoradiography, especially of the alimentary tract, with demonstration of plates. Proc. R. Soc. Med. 5(Electro Ther Sect):73, 1912.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Chistyakov, A.: LoomyBear/3dsjq: jQuery framework to build 3D stereoscopic web pages. https://github.com/LoomyBear/3dsjq. [Online; accessed 16-February-2016] (2015)

  7. 7.

    Chistyakov, A., González-Zúñiga, D., Carrabina, J.: Bringing the web closer: Stereoscopic 3D web conversion. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 8278 LNCS, pp. 22–25 (2013)

  8. 8.

    Doi, K., and Duda, E., Detectability of depth information by use of magnification stereoscopic technique in cerebral angiography. Radiology 146(1):91–95, 1983.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    EveryMac.com: MacBook Pro Core i7 2.3 15 Retina 2012 Specs. http://goo.gl/fjBf3t. [Online; accessed 16-February-2016] (2012)

  10. 10.

    González-Zúñiga, D., Chistyakov, A., Orero, P., Carrabina, J.: Breaking the pattern: Study on stereoscopic web perception. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 8276 LNCS, pp. 26–33 (2013)

  11. 11.

    Häkkilä, J., Posti, M., Koskenranta, O., Ventä-Olkkonen, L.: Design and evaluation of mobile phonebook application with stereoscopic 3D user interface. CHI ’13 Extended Abstracts on Human Factors in Computing Systems on - CHI EA ’13 p. 1389. doi:10.1145/2468356.2468604 (2013)

  12. 12.

    Han, S., and Lee, D. Y.: Extensions for Stereoscopic 3D support. https://goo.gl/6fw6a3. [Online; accessed 06-June-2015] (2012)

  13. 13.

    Hartmann, W. J., and Hikspoors, H. M. J., Three-dimensional tv with cordless flc spectacles. Inf. Disp. 3 (9):15–17, 1987. http://dl.acm.org/citation.cfm?id=33861.33864.

    Google Scholar 

  14. 14.

    Hernandez, A., Basset, O., Bremond, A., Magnin, I. E., Stereoscopic visualization of three-dimensional ultrasonic data applied to breast tumours. Eur. J. Ultrasound 8(1):51–65, 1998.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Hickson, I.: A vocabulary and associated APIs for HTML and XHTML. http://www.w3.org/TR/html5/. [Online; accessed 05-June-2015] (2012)

  16. 16.

    Holliman, N.: 3d display systems. to appear pp 0–7503 (2005)

  17. 17.

    Holliman, N. S., Dodgson, N. A., Favalora, G. E., Pockett, L., Three-dimensional displays: a review and applications analysis. IEEE Trans. Broadcast. 57(2):362–371, 2011.

    Article  Google Scholar 

  18. 18.

    Howard, I. P.: Seeing in depth, Vol. 1: Basic mechanisms University of Toronto Press (2002)

  19. 19.

    HP: HP Compaq Elite 8300 Microtower PC Support. http://h20565.www2.hp.com/portal/site/hpsc/public/psi/home/?sp4ts.oid=5232859. [Online; accessed 16-February-2016] (2012)

  20. 20.

    IJsselsteijn, W., de Ridder, H., Hamberg, R., Bouwhuis, D., Freeman, J., Perceived depth and the feeling of presence in 3dtv. Displays 18(4):207–214, 1998.

    Article  Google Scholar 

  21. 21.

    Johnston, S., Renambot, L., Sauter, D.: Employing WebGL to develop interactive stereoscopic 3D content for use in biomedical visualization. In: Dolinsky, M., and McDowall, I. E. (Eds.) The Engineering Reality of Virtual Reality 2013. Proceedings of the SPIE. doi:10.1117/12.2007594. http://adsabs.harvard.edu/abs/2013SPIE.8649E..05J, Vol. 8649, p. 864905 (2013)

  22. 22.

    Kersten, M. A., Stewart, A. J., Troje, N., Ellis, R., Enhancing depth perception in translucent volumes. IEEE Trans. Vis. Comput. Graph. 12(5):1117–1124, 2006.

    Article  PubMed  Google Scholar 

  23. 23.

    Khronos WebGL Working Group: WebGL - OpenGL ES 2.0 for the Web. https://www.khronos.org/webgl/. [Online; accessed 10-June-2015] (2015)

  24. 24.

    Martinez Escobar, M., Junke, B., Holub, J., Hisley, K., Eliot, D., Winer, E., Evaluation of monoscopic and stereoscopic displays for visual-spatial tasks in medical contexts. Comput. Biol. Med. 61:138–143, 2015. doi:10.1016/j.compbiomed.2015.03.026.

    Article  PubMed  Google Scholar 

  25. 25.

    McIntire, J. P., Havig, P. R., Geiselman, E. E., Stereoscopic 3D displays and human performance: A comprehensive review. Displays 35(1):18–26, 2014. doi:10.1016/j.displa.2013.10.004.

    Article  Google Scholar 

  26. 26.

    McMahan, R. P., Gorton, D., Gresock, J., McConnell, W., Bowman, D. A.: Separating the effects of level of immersion and 3D interaction techniques. In: Proceedings of the ACM symposium on Virtual reality software and technology - VRST ’06, p. 108. ACM Press, New York, USA (2006), doi:10.1145/1180495.1180518

  27. 27.

    Moll, T., Turjman, F., Picard, C., Bres, J., Amiel, M., Depth separation in ten observers with a new stereoscopic x-ray acquisition system. Eur. Radiol. 7(8):1343–1347, 1997.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Nelson, T., Ji, E., Lee, J., Stereoscopic evaluation of fetal bony structures. J. Ultrasound Med. 27, 2008. http://www.jultrasoundmed.org/content/27/1/15.short.

  29. 29.

    Nelson, T. R., Ji, E. K., Lee, J. H., Bailey, M. J., Pretorius, D. H., Stereoscopic evaluation of fetal bony structures. J. Ultrasound Med. 27(1):15–24, 2008.

    PubMed  Google Scholar 

  30. 30.

    NetApplications.com: Browser market share. https://goo.gl/mmEhC9. [Online; accessed 18-Feb-2016] (2016)

  31. 31.

    NetApplications.com: Operating system market share. https://goo.gl/UDObNu. [Online; accessed 18-Feb-2016] (2016)

  32. 32.

    Nocent, O., Piotin, S., Benassarou, A., Jaisson, M., Lucas, L.: 3D displays and tracking devices for your browser: A plugin-free approach relying on web standards. In: Proceedings 2012 International Conference on 3D Imaging, IC3D 2012. doi:10.1109/IC3D.2012.6615141. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6615141, pp. 1–8 (2012)

  33. 33.

    Pastoor, S., and Wöpking, M., 3-d displays: A review of current technologies. Displays 17(2):100–110, 1997.

    Article  Google Scholar 

  34. 34.

    Resig, J.: jQuery. https://jquery.com/. [Online; accessed 05-June-2015] (2006)

  35. 35.

    Rosenbaum, A. E., Huda, W., Lieberman, K. A., Caruso, R. D., Binocular three-dimensional perception through stereoscopic generation from rotating images. Acad. Radiol. 7(1):21–26, 2000.

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Sauro, J.: Measuring usability with the system usability scale (sus) (2011)

  37. 37.

    Schild, J., Bölicke, L., LaViola Jr., J. J., Masuch, M.: Creating and analyzing stereoscopic 3D graphical user interfaces in digital games. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems - CHI ’13, p. 169. ACM Press, New York, USA (2013), doi:10.1145/2470654.2470678

  38. 38.

    Sony: PlayStation 3D Display with SimulView Technology. http://us.playstation.com/ps3/accessories/sony-playstation-3d-display-ps3/index.html. [Online; accessed 16-February-2016] (2011)

  39. 39.

    StatCounter: StatCounter Global Stats - Browser, OS, Search Engine including Mobile Usage Share. http://goo.gl/iaX0Hv. [Online; accessed 18-Feb-2016] (2015)

  40. 40.

    StatCounter: StatCounter Global Stats - Browser, OS, Search Engine including Mobile Usage Share. http://goo.gl/AzNgww. [Online; accessed 08-June-2015] (2015)

  41. 41.

    Takahashi, M., Bussaka, H., Miyawaki, M., Stereoscopic dsa of the central nervous system. Neuroradiology 28(2):105–108, 1986.

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Takatalo, J., Kawai, T., Kaistinen, J., Nyman, G., Häkkinen, J., User experience in 3d stereoscopic games. Med. Psychol. 14(4):387–414, 2011.

    Article  Google Scholar 

  43. 43.

    three.js: three.js - Javascript 3D library. http://threejs.org/. [Online; accessed 10-June-2015] (2015)

  44. 44.

    Van Beurden, M., IJsselsteijn, W., Juola, J., Effectiveness of stereoscopic displays in medicine: a review. 3D Res. 3(1):1–13, 2012.

    Article  Google Scholar 

  45. 45.

    Ventä-Olkkonen, L., Posti, M., Häkkilä, J.: How to Use 3D in Stereoscopic Mobile User Interfaces. In: Proceedings of International Conference on Making Sense of Converging Media - AcademicMindTrek ’13. . http://dl.acm.org/citation.cfm?id=2523447, pp. 39–42 (2013)

  46. 46.

    (W3C), W. W. W. C.: World Wide Web Consortium (W3C). https://www.w3.org/. [Online; accessed 16-February-2016] (2016)

  47. 47.

    Wang, W., Dong, S., Wang, R., Cheng, Q., Zhang, J., Liu, Z.: Stereoscopic 3D Web: From idea to implementation. In: 2014 International Conference on Information Science, Electronics and Electrical Engineering, vol. 3, pp. 1440–1444. IEEE. doi:10.1109/InfoSEEE.2014.6946158. http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6946158 (2014)

  48. 48.

    Wang, X. H., Durick, J. E., Lu, A., Herbert, D. L., Fuhrman, C. R., Lacomis, J. M., Britton, C. A., Strollo, D. C., Shang, S. S., Golla, S. K., et al, Compare display schemes for lung nodule ct screening. J. Digit. Imaging 24(3):478–484, 2011.

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Wieringa, F. P., Bouma, H., Eendebak, P. T., Van Basten, J. P. A., Beerlage, H. P., Smits, G. A. H. J., Bos, J. E., Improved depth perception with three - dimensional auxiliary display and computer generated three - dimensional panoramic overviews in robot - assisted laparoscopy. J. Med. Imaging, 2014. doi:10.1117/1.JMI.1.1.015001.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jordi Carrabina.

Additional information

This article is part of the Topical Collection on Advances in Ambient Intelligence for Health (AmIHEALTH 2015)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chistyakov, A., Soto, M.T., Martí, E. et al. An HTML Tool for Production of Interactive Stereoscopic Compositions. J Med Syst 40, 265 (2016). https://doi.org/10.1007/s10916-016-0616-0

Download citation

Keywords

  • Stereoscopic
  • 3D
  • HTML
  • Human-computer interaction
  • User interface