Estimation of Temporal Gait Events from a Single Accelerometer Through the Scale-Space Filtering Idea

Abstract

The purpose of this paper is to develop an accelerometry system capable of performing gait event demarcation and calculation of temporal parameters using a single waist-mounted device. Particularly, a mobile phone positioned over the L2 vertebra is used to acquire trunk accelerations during walking. Signals from the acceleration magnitude and the vertical acceleration are smoothed through different filters. Cut-off points between filtered signals as a result of convolving with varying levels of Gaussian filters and other robust features against temporal variation and noise are used to identify peaks that correspond to gait events. Five pre-frail older adults and five young healthy adults were recruited in an experiment. Cadence, step/stride time, step/stride CV, step asymmetry and percentages of the stance/swing and single/double support phases, among the two groups of different mobility were quantified by the system.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Notes

  1. 1.

    Finite Impulse Response.

  2. 2.

    Continuous Wavelet Transform.

References

  1. 1.

    Ghoussayni, S., Stevens, C., Durham, S., and Ewins, D., Assessment and validation of a simple automated method for the detection of gait events and intervals. Gait Posture 20(3):266–272, 2004.

    Article  PubMed  Google Scholar 

  2. 2.

    Davis, R. B., Ounpuu, S., DeLuca, P. A., and Romness, M. J., Its role in treatment decision-making Clinical gait analysis, Vol. 1 (1999). http://www.medscape.com/viewarticle/440148

  3. 3.

    Chen, M., and Huang, B., Intelligent shoes for abnormal gait detection. In: Proceedings of the International Conference on Robotics and Automation, Pasadena, CA, USA, pp. 2019–2024 (2008)

  4. 4.

    Theologis, T., and Stebbins, J., The use of gait analysis in the treatment of pediatric foot and ankle disorders. Foot Ankle Clin. 15(2):365–382, 2010.

    Article  PubMed  Google Scholar 

  5. 5.

    Brach, J. S., Perera, S., Studenski, S., and Newman, A. B., The reliability and validity of measures of gait variability in community-dwelling older adults. Arch. Phys. Med. Rehabil. 89(12):2293–2296, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Hausdorff, J. M., Gait variability: methods, modeling and meaning, Vol. 2 (2005)

  7. 7.

    Srimonti, D., Dipak, G., and Sucharita, C., Multifractal detrended fluctuation analysis of human gait diseases. Front. Physiol. 4(274):1–7, 2013.

    Google Scholar 

  8. 8.

    Fontecha, J., Navarro, F. J., Hervas, R., and Bravo, J., Elderly frailty detection by using accelerometer-enabled smartphones and clinical information records. Journal Personal and Ubiquitous Computing 17(6):1073–1083, 2013.

    Article  Google Scholar 

  9. 9.

    Montero-Odasso, M., Muir, S. W., Hall, M., Doherty, T. J., Kloseck, M., Beauchet, O., and Speechley, M., Gait variability is associated with frailty in community-dwelling older adults. J. Gerontol. A Biol. Sci. Med. Sci. 66(5):568–576, 2011.

    Article  PubMed  Google Scholar 

  10. 10.

    Camicioli, R., Howieson, D., Oken, G., Sexton, G., and Kaye, J., Motor slowing precedes cognitive impairment in the oldest old. Neurology 50(5):1496–1498, 1998.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Moore, S. T., MacDougall, H. G., Gracies, J. M., Cohen, H. S., and Ondo, W. G., Long-term monitoring of gait in Parkinson’s disease. Gait Posture 26(2):200–207, 2007.

    Article  PubMed  Google Scholar 

  12. 12.

    Salarian, A., Russmann, H., Vingerhoets, F. J., Dehollain, C., Blanc, Y., Burkhard, P. R., Aminian, K., Gait assessment in Parkinson’s disease: toward an ambulatory system for long-term monitoring. IEEE Trans. Biomed. Eng. 51(8):1434–1443, 2004.

    Article  PubMed  Google Scholar 

  13. 13.

    Lee, H., Guan, L., Burne, J. A., Human gait and posture analysis for diagnosing neurological disorders. In: Proceeding of IEEE International Conference on Image Processing, Vol. 2, pp. 435–438 (2000)

  14. 14.

    Trew, M., and Everett, T., Human movement: an introductory text. Churchill Livingstone (2001)

  15. 15.

    Perry, J., Gait analysis normal and pathological function. Thorofare, NJ Slack (1992)

  16. 16.

    Nieto-Hidalgo, M., Ferrández-Pastor, F. J., Valdivieso-Sarabia, R. J., and García-Chamizo, J. M., Vision based extraction of dynamic gait features focused on feet movement using RGB camera. In: Proceeding of the 1st International Conference AmIHEALTH 2015, LNCS 9456, Puerto Varas, Chile, pp. 155–166 (2015)

  17. 17.

    Evans, A. L., Duncan, G., and Gilchrist, W., Recording accelerations in body movements. Med. Biol. Eng. Comput. 29(1):102–104, 1991.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Zijlstra, W., and Hof, A., Assessment of spatio-temporal gait parameters from trunk accelerations during human walking. Gait Posture 18(2):1–10, 2003.

    Article  PubMed  Google Scholar 

  19. 19.

    Hartmann, A., Luzi, S., Murer, K., De Bie, R. A., and De Bruin, E. D., Concurrent validity of a trunk tri-axial accelerometer system for gait analysis in older adults. Gait Posture 29(3):444–448, 2009.

    Article  PubMed  Google Scholar 

  20. 20.

    Mansfield, A., and Lyons, G. M., The use of accelerometry to detect heel contact events for use as a sensor in FES assisted walking. Med. Eng. Phys. 25(10):879–885, 2003.

    Article  PubMed  Google Scholar 

  21. 21.

    González, R. C., Alvarez, D., López, A. M., and Alvarez, J. C., Ambulatory estimation of mean step length during unconstrained walking by means of COG accelerometry. Comput. Meth. Biomech. Biomed. Eng. 12 (6):721–726, 2009.

    Article  Google Scholar 

  22. 22.

    Godfrey, A., Del Vin, S., Barry, G., Mathers, J., and Rochester, L., Instrumenting gait with an accelerometer: a system and algorithm examination. Med. Eng. Phys. 37(4):400–407, 2015.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    González, I., López-Nava, I. H., Fontecha, J., Munõz-Meléndez, A., Pérez-SanPablo, A. I., and Quiñones-Urióstegui, I., Comparison between passive vision-based system and a wearable inertial-based system for estimating temporal gait parameters related to the GAITRite electronic walkway. J. Biomed. Inform. 62:210–223, 2016.

    Article  PubMed  Google Scholar 

  24. 24.

    Peak detection algorithm using MATLAB. Available online: http://billauer.co.il/peakdet.html (accessed on 4th February 2016)

  25. 25.

    Tinetti, M. E., Performance-oriented assessment of mobility problems in elderly patients. J Am Geriatr Soc 34(2):119–126, 1986.

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by the FRASE MINECO project (TIN2013-47152-C3-1-R) and also by the Plan Propio de Investigación program from Castilla-La Mancha University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Iván González.

Additional information

This article is part of the Topical Collection on Mobile & Wireless Health.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

González, I., Fontecha, J., Hervás, R. et al. Estimation of Temporal Gait Events from a Single Accelerometer Through the Scale-Space Filtering Idea. J Med Syst 40, 251 (2016). https://doi.org/10.1007/s10916-016-0612-4

Download citation

Keywords

  • Quantitative gait analysis
  • Heel-strike detection
  • Toe-off detection
  • Frailty
  • Single accelerometer
  • Mobile phone
  • Scale-space filter