Journal of Medical Systems

, 40:251 | Cite as

Estimation of Temporal Gait Events from a Single Accelerometer Through the Scale-Space Filtering Idea

  • Iván González
  • Jesús Fontecha
  • Ramón Hervás
  • José Bravo
Mobile & Wireless Health
Part of the following topical collections:
  1. Advances in Ambient Intelligence for Health (AmIHEALTH 2015)


The purpose of this paper is to develop an accelerometry system capable of performing gait event demarcation and calculation of temporal parameters using a single waist-mounted device. Particularly, a mobile phone positioned over the L2 vertebra is used to acquire trunk accelerations during walking. Signals from the acceleration magnitude and the vertical acceleration are smoothed through different filters. Cut-off points between filtered signals as a result of convolving with varying levels of Gaussian filters and other robust features against temporal variation and noise are used to identify peaks that correspond to gait events. Five pre-frail older adults and five young healthy adults were recruited in an experiment. Cadence, step/stride time, step/stride CV, step asymmetry and percentages of the stance/swing and single/double support phases, among the two groups of different mobility were quantified by the system.


Quantitative gait analysis Heel-strike detection Toe-off detection Frailty Single accelerometer Mobile phone Scale-space filter 



This work is supported by the FRASE MINECO project (TIN2013-47152-C3-1-R) and also by the Plan Propio de Investigación program from Castilla-La Mancha University.


  1. 1.
    Ghoussayni, S., Stevens, C., Durham, S., and Ewins, D., Assessment and validation of a simple automated method for the detection of gait events and intervals. Gait Posture 20(3):266–272, 2004.CrossRefPubMedGoogle Scholar
  2. 2.
    Davis, R. B., Ounpuu, S., DeLuca, P. A., and Romness, M. J., Its role in treatment decision-making Clinical gait analysis, Vol. 1 (1999).
  3. 3.
    Chen, M., and Huang, B., Intelligent shoes for abnormal gait detection. In: Proceedings of the International Conference on Robotics and Automation, Pasadena, CA, USA, pp. 2019–2024 (2008)Google Scholar
  4. 4.
    Theologis, T., and Stebbins, J., The use of gait analysis in the treatment of pediatric foot and ankle disorders. Foot Ankle Clin. 15(2):365–382, 2010.CrossRefPubMedGoogle Scholar
  5. 5.
    Brach, J. S., Perera, S., Studenski, S., and Newman, A. B., The reliability and validity of measures of gait variability in community-dwelling older adults. Arch. Phys. Med. Rehabil. 89(12):2293–2296, 2008.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Hausdorff, J. M., Gait variability: methods, modeling and meaning, Vol. 2 (2005)Google Scholar
  7. 7.
    Srimonti, D., Dipak, G., and Sucharita, C., Multifractal detrended fluctuation analysis of human gait diseases. Front. Physiol. 4(274):1–7, 2013.Google Scholar
  8. 8.
    Fontecha, J., Navarro, F. J., Hervas, R., and Bravo, J., Elderly frailty detection by using accelerometer-enabled smartphones and clinical information records. Journal Personal and Ubiquitous Computing 17(6):1073–1083, 2013.CrossRefGoogle Scholar
  9. 9.
    Montero-Odasso, M., Muir, S. W., Hall, M., Doherty, T. J., Kloseck, M., Beauchet, O., and Speechley, M., Gait variability is associated with frailty in community-dwelling older adults. J. Gerontol. A Biol. Sci. Med. Sci. 66(5):568–576, 2011.CrossRefPubMedGoogle Scholar
  10. 10.
    Camicioli, R., Howieson, D., Oken, G., Sexton, G., and Kaye, J., Motor slowing precedes cognitive impairment in the oldest old. Neurology 50(5):1496–1498, 1998.CrossRefPubMedGoogle Scholar
  11. 11.
    Moore, S. T., MacDougall, H. G., Gracies, J. M., Cohen, H. S., and Ondo, W. G., Long-term monitoring of gait in Parkinson’s disease. Gait Posture 26(2):200–207, 2007.CrossRefPubMedGoogle Scholar
  12. 12.
    Salarian, A., Russmann, H., Vingerhoets, F. J., Dehollain, C., Blanc, Y., Burkhard, P. R., Aminian, K., Gait assessment in Parkinson’s disease: toward an ambulatory system for long-term monitoring. IEEE Trans. Biomed. Eng. 51(8):1434–1443, 2004.CrossRefPubMedGoogle Scholar
  13. 13.
    Lee, H., Guan, L., Burne, J. A., Human gait and posture analysis for diagnosing neurological disorders. In: Proceeding of IEEE International Conference on Image Processing, Vol. 2, pp. 435–438 (2000)Google Scholar
  14. 14.
    Trew, M., and Everett, T., Human movement: an introductory text. Churchill Livingstone (2001)Google Scholar
  15. 15.
    Perry, J., Gait analysis normal and pathological function. Thorofare, NJ Slack (1992)Google Scholar
  16. 16.
    Nieto-Hidalgo, M., Ferrández-Pastor, F. J., Valdivieso-Sarabia, R. J., and García-Chamizo, J. M., Vision based extraction of dynamic gait features focused on feet movement using RGB camera. In: Proceeding of the 1st International Conference AmIHEALTH 2015, LNCS 9456, Puerto Varas, Chile, pp. 155–166 (2015)Google Scholar
  17. 17.
    Evans, A. L., Duncan, G., and Gilchrist, W., Recording accelerations in body movements. Med. Biol. Eng. Comput. 29(1):102–104, 1991.CrossRefPubMedGoogle Scholar
  18. 18.
    Zijlstra, W., and Hof, A., Assessment of spatio-temporal gait parameters from trunk accelerations during human walking. Gait Posture 18(2):1–10, 2003.CrossRefPubMedGoogle Scholar
  19. 19.
    Hartmann, A., Luzi, S., Murer, K., De Bie, R. A., and De Bruin, E. D., Concurrent validity of a trunk tri-axial accelerometer system for gait analysis in older adults. Gait Posture 29(3):444–448, 2009.CrossRefPubMedGoogle Scholar
  20. 20.
    Mansfield, A., and Lyons, G. M., The use of accelerometry to detect heel contact events for use as a sensor in FES assisted walking. Med. Eng. Phys. 25(10):879–885, 2003.CrossRefPubMedGoogle Scholar
  21. 21.
    González, R. C., Alvarez, D., López, A. M., and Alvarez, J. C., Ambulatory estimation of mean step length during unconstrained walking by means of COG accelerometry. Comput. Meth. Biomech. Biomed. Eng. 12 (6):721–726, 2009.CrossRefGoogle Scholar
  22. 22.
    Godfrey, A., Del Vin, S., Barry, G., Mathers, J., and Rochester, L., Instrumenting gait with an accelerometer: a system and algorithm examination. Med. Eng. Phys. 37(4):400–407, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    González, I., López-Nava, I. H., Fontecha, J., Munõz-Meléndez, A., Pérez-SanPablo, A. I., and Quiñones-Urióstegui, I., Comparison between passive vision-based system and a wearable inertial-based system for estimating temporal gait parameters related to the GAITRite electronic walkway. J. Biomed. Inform. 62:210–223, 2016.CrossRefPubMedGoogle Scholar
  24. 24.
    Peak detection algorithm using MATLAB. Available online: (accessed on 4th February 2016)
  25. 25.
    Tinetti, M. E., Performance-oriented assessment of mobility problems in elderly patients. J Am Geriatr Soc 34(2):119–126, 1986.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.University of Castilla-La Mancha, Esc. Sup. de InformáticaCiudad RealSpain

Personalised recommendations