Skip to main content
Log in

Processing Time Reduction: an Application in Living Human High-Resolution Diffusion Magnetic Resonance Imaging Data

  • Systems-Level Quality Improvement
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

An Erratum to this article was published on 24 January 2017

Abstract

High Angular Resolution Diffusion Imaging (HARDI) is a type of brain imaging that collects a very large amount of data, and if many subjects are considered then it amounts to a big data framework (e.g., the human connectome project has 20 Terabytes of data). HARDI is also becoming increasingly relevant for clinical settings (e.g., detecting early cerebral ischemic changes in acute stroke, and in pre-clinical assessment of white matter-WM anatomy using tractography). Thus, this method is becoming a routine assessment in clinical settings. In such settings, the computation time is critical, and finding forms of reducing the processing time in high computation processes such as Diffusion Spectrum Imaging (DSI), a form of HARDI data, is very relevant to increase data-processing speed. Here we analyze a method for reducing the computation time of the dMRI-based axonal orientation distribution function h by using Monte Carlo sampling-based methods for voxel selection. Results evidenced a robust reduction in required data sampling of about 50 % without losing signal’s quality. Moreover, we show that the convergence to the correct value in this type of Monte Carlo HARDI/DSI data-processing has a linear improvement in data-processing speed of the ODF determination. Although further improvements are needed, our results represent a promissory step for future processing time reduction in big data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lichtman, J.W., Pfister, H., and Shavit, N., The big data challenges of connectomics. Nat. Neurosci. 17(11):1448–1454, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Barkhof, F., Haller, S., and Rombouts, S.A., Resting-state functional MR imaging: A new window to the brain. Radiology. 272(1):29–49, 2014.

    Article  PubMed  Google Scholar 

  3. Worbe, Y., Neuroimaging signature of neuropsychiatric disorders. Curr. Opin. Neurol. 28(4):358–364, 2015.

    Article  CAS  PubMed  Google Scholar 

  4. Zhou, J., and Seeley, W.W., Network dysfunction in Alzheimer's disease and frontotemporal dementia: Implications for psychiatry. Biol. Psychiatry. 75(7):565–573, 2014.

    Article  PubMed  Google Scholar 

  5. Sharp, D.J., Scott, G., and Leech, R., Network dysfunction after traumatic brain injury. Nat. Rev. Neurol. 10(3):156–166, 2014.

    Article  PubMed  Google Scholar 

  6. Craddock, R.C., Tungaraza, R.L., and Milham, M.P., Connectomics and new approaches for analyzing human brain functional connectivity. Gigascience. 4:13, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Marder, E., Understanding brains: details, intuition, and big data. PLoS Biol. 13(5):e1002147, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Boubela, R.N., et al., Big data approaches for the analysis of large-scale fMRI data using apache spark and GPU processing: A demonstration on resting-state fMRI data from the human connectome project. Front Neurosci. 9:492, 2015.

    PubMed  Google Scholar 

  9. Conturo, T.E., Lori, N.F., Cull, T.S., Akbudak, E., Snyder, A.Z., et al., Tracking neuronal fiber pathways in the living human brain. Proc. Natl. Acad. Sci. U. S. A. 96:10422–10427, 1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lori, N.F., Akbudak, E., Shimony, J.S., Cull, T.S., Snyder, A.Z., et al., Diffusion tensor fiber tracking of human brain connectivity: aquisition methods, reliability analysis and biological results. NMR Biomed. 15:494―515, 2002.

    Article  PubMed  Google Scholar 

  11. Tuch, D.S., Q-ball imaging. Magn. Reson. Med. 52:1358–1372, 2004.

    Article  PubMed  Google Scholar 

  12. Behrens, T.E.J., Berg, H.J., Jbabdi, S., Rushworth, M.F.S., and Woolrich, M.W., Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? Neuroimage. 34:144–155, 2007.

    Article  CAS  PubMed  Google Scholar 

  13. Wedeen, V.J., Wang, R.P., Schmahmann, J.D., Benner, T., Tseng, W.Y.I., et al., Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. Neuroimage. 41:1267–1277, 2008.

    Article  CAS  PubMed  Google Scholar 

  14. Raffelt, D., Tournier, J.D., Rose, S., Ridgway, G.R., Henderson, R., et al., Apparent Fibre Density: A novel measure for the analysis of diffusion-weighted magnetic resonance images. Neuroimage. 59:3976–3994, 2012.

    Article  PubMed  Google Scholar 

  15. Wedeen, V.J., Rosene, D.L., Wang, R., Dai, G., Mortazavi, F., et al., The geometric structure of the brain fiber pathways. Science. 335:1628–1634, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dani, A., Huang, B., Bergan, J., Dulac, C., and Zhuang, X., Superresolution imaging of chemical synapses in the brain. Neuron. 68:843–856, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hawrylycz, M.J., Lein, E.S., Guillozet-Bongaarts, A.L., Shen, E.H., Ng, L., et al., An anatomically comprehensive atlas of the adult human brain transcriptome. Nature. 489:391–399, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tuch, D.S., Reese, T.G., Wiegell, M.R., and Wedeen, V.J., DMRI of complex neural architecture. Neuron. 40:885–895, 2003.

    Article  CAS  PubMed  Google Scholar 

  19. Hill, S.L., Wang, Y., Riachi, I., Schürmann, F., and Markram, H., Statistical connectivity provides a sufficient foundation for specific functional connectivity in neocortical neural microcircuits. Proc. Natl. Acad. Sci. U. S. A. 109:E2885–E2894, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang, R., Benner, T., Sorensen, A.G., and Wedeen, V.J., Diffusion toolkit: A software package for diffusion imaging data processing and tractography. Proc. Intl. Soc. Mag. Reson. Med. 15:3720, 2007.

    Google Scholar 

  21. Assaf, Y., Blumenfeld-Katzir, T., Yovel, Y., and Basser, P.J., AxCaliber: a method for measuring axon diameter distribution from dMRI. Magn. Reson. Med. 59:1347–1354, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Milne, M.L., and Conradi, M.S., Multi-exponential signal decay from diffusion in a single compartment. J. Magn. Reson. 197:87–90, 2009.

    Article  CAS  PubMed  Google Scholar 

  23. U.C.L.A. (n.d.) LONI Image Data Archive (IDA). Available: https://ida.loni.ucla.edu/login.jsp. Accessed 16 November 2012. (2012)

  24. Zhang, Y., Brady, M., and Smith, S., Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging. 20:45–57, 2001.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the financial support by QREN, FEDER, COMPETE, Investigador FCT, FCT Ciencia 2007, FCT PTDC/SAU-BEB/100147/2008, FCT Project Scope UID/CEC/00319/2013, and the ERASMUS projects (FCT stands for “Fundação para a Ciência e Tecnologia”). We are thankful the relevant scientific conversations with Alard Roebroeck, Rainer Goebel, Van Wedeen, and Gina Caetano. Data collection for this work was in part from “Human Connectome Project” (HCP; Principal Investigators: Bruce Rosen, M.D., Ph.D., Arthur W. Toga, Ph.D., Van J. Weeden, MD). HCP funding was provided by the National Institute of Dental and Craniofacial Research (NIDCR), the National Institute of Mental Health (NIMH), and the National Institute of Neurological Disorders and Stroke (NINDS). HCP data are disseminated by the Laboratory of Neuro Imaging at the University of Southern California.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolás F . Lori.

Additional information

This article is part of the Topical Collection on Systems-Level Quality Improvement

An erratum to this article is available at http://dx.doi.org/10.1007/s10916-016-0683-2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lori, N.F..., Ibañez, A., Lavrador, R. et al. Processing Time Reduction: an Application in Living Human High-Resolution Diffusion Magnetic Resonance Imaging Data. J Med Syst 40, 243 (2016). https://doi.org/10.1007/s10916-016-0594-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-016-0594-2

Keywords

Navigation