Journal of Medical Systems

, 40:243 | Cite as

Processing Time Reduction: an Application in Living Human High-Resolution Diffusion Magnetic Resonance Imaging Data

  • Nicolás F . Lori
  • Augustin Ibañez
  • Rui Lavrador
  • Lucia Fonseca
  • Carlos Santos
  • Rui Travasso
  • Artur Pereira
  • Rosaldo Rossetti
  • Nuno Sousa
  • Victor Alves
Systems-Level Quality Improvement
Part of the following topical collections:
  1. Health Information Systems & Technologies


High Angular Resolution Diffusion Imaging (HARDI) is a type of brain imaging that collects a very large amount of data, and if many subjects are considered then it amounts to a big data framework (e.g., the human connectome project has 20 Terabytes of data). HARDI is also becoming increasingly relevant for clinical settings (e.g., detecting early cerebral ischemic changes in acute stroke, and in pre-clinical assessment of white matter-WM anatomy using tractography). Thus, this method is becoming a routine assessment in clinical settings. In such settings, the computation time is critical, and finding forms of reducing the processing time in high computation processes such as Diffusion Spectrum Imaging (DSI), a form of HARDI data, is very relevant to increase data-processing speed. Here we analyze a method for reducing the computation time of the dMRI-based axonal orientation distribution function h by using Monte Carlo sampling-based methods for voxel selection. Results evidenced a robust reduction in required data sampling of about 50 % without losing signal’s quality. Moreover, we show that the convergence to the correct value in this type of Monte Carlo HARDI/DSI data-processing has a linear improvement in data-processing speed of the ODF determination. Although further improvements are needed, our results represent a promissory step for future processing time reduction in big data.


White matter Diffusion MRI Monte Carlo sampling methods Optimization Axonal ODF 



We thank the financial support by QREN, FEDER, COMPETE, Investigador FCT, FCT Ciencia 2007, FCT PTDC/SAU-BEB/100147/2008, FCT Project Scope UID/CEC/00319/2013, and the ERASMUS projects (FCT stands for “Fundação para a Ciência e Tecnologia”). We are thankful the relevant scientific conversations with Alard Roebroeck, Rainer Goebel, Van Wedeen, and Gina Caetano. Data collection for this work was in part from “Human Connectome Project” (HCP; Principal Investigators: Bruce Rosen, M.D., Ph.D., Arthur W. Toga, Ph.D., Van J. Weeden, MD). HCP funding was provided by the National Institute of Dental and Craniofacial Research (NIDCR), the National Institute of Mental Health (NIMH), and the National Institute of Neurological Disorders and Stroke (NINDS). HCP data are disseminated by the Laboratory of Neuro Imaging at the University of Southern California.


  1. 1.
    Lichtman, J.W., Pfister, H., and Shavit, N., The big data challenges of connectomics. Nat. Neurosci. 17(11):1448–1454, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Barkhof, F., Haller, S., and Rombouts, S.A., Resting-state functional MR imaging: A new window to the brain. Radiology. 272(1):29–49, 2014.CrossRefPubMedGoogle Scholar
  3. 3.
    Worbe, Y., Neuroimaging signature of neuropsychiatric disorders. Curr. Opin. Neurol. 28(4):358–364, 2015.CrossRefPubMedGoogle Scholar
  4. 4.
    Zhou, J., and Seeley, W.W., Network dysfunction in Alzheimer's disease and frontotemporal dementia: Implications for psychiatry. Biol. Psychiatry. 75(7):565–573, 2014.CrossRefPubMedGoogle Scholar
  5. 5.
    Sharp, D.J., Scott, G., and Leech, R., Network dysfunction after traumatic brain injury. Nat. Rev. Neurol. 10(3):156–166, 2014.CrossRefPubMedGoogle Scholar
  6. 6.
    Craddock, R.C., Tungaraza, R.L., and Milham, M.P., Connectomics and new approaches for analyzing human brain functional connectivity. Gigascience. 4:13, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Marder, E., Understanding brains: details, intuition, and big data. PLoS Biol. 13(5):e1002147, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Boubela, R.N., et al., Big data approaches for the analysis of large-scale fMRI data using apache spark and GPU processing: A demonstration on resting-state fMRI data from the human connectome project. Front Neurosci. 9:492, 2015.PubMedGoogle Scholar
  9. 9.
    Conturo, T.E., Lori, N.F., Cull, T.S., Akbudak, E., Snyder, A.Z., et al., Tracking neuronal fiber pathways in the living human brain. Proc. Natl. Acad. Sci. U. S. A. 96:10422–10427, 1999.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Lori, N.F., Akbudak, E., Shimony, J.S., Cull, T.S., Snyder, A.Z., et al., Diffusion tensor fiber tracking of human brain connectivity: aquisition methods, reliability analysis and biological results. NMR Biomed. 15:494―515, 2002.CrossRefPubMedGoogle Scholar
  11. 11.
    Tuch, D.S., Q-ball imaging. Magn. Reson. Med. 52:1358–1372, 2004.CrossRefPubMedGoogle Scholar
  12. 12.
    Behrens, T.E.J., Berg, H.J., Jbabdi, S., Rushworth, M.F.S., and Woolrich, M.W., Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? Neuroimage. 34:144–155, 2007.CrossRefPubMedGoogle Scholar
  13. 13.
    Wedeen, V.J., Wang, R.P., Schmahmann, J.D., Benner, T., Tseng, W.Y.I., et al., Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. Neuroimage. 41:1267–1277, 2008.CrossRefPubMedGoogle Scholar
  14. 14.
    Raffelt, D., Tournier, J.D., Rose, S., Ridgway, G.R., Henderson, R., et al., Apparent Fibre Density: A novel measure for the analysis of diffusion-weighted magnetic resonance images. Neuroimage. 59:3976–3994, 2012.CrossRefPubMedGoogle Scholar
  15. 15.
    Wedeen, V.J., Rosene, D.L., Wang, R., Dai, G., Mortazavi, F., et al., The geometric structure of the brain fiber pathways. Science. 335:1628–1634, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Dani, A., Huang, B., Bergan, J., Dulac, C., and Zhuang, X., Superresolution imaging of chemical synapses in the brain. Neuron. 68:843–856, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Hawrylycz, M.J., Lein, E.S., Guillozet-Bongaarts, A.L., Shen, E.H., Ng, L., et al., An anatomically comprehensive atlas of the adult human brain transcriptome. Nature. 489:391–399, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Tuch, D.S., Reese, T.G., Wiegell, M.R., and Wedeen, V.J., DMRI of complex neural architecture. Neuron. 40:885–895, 2003.CrossRefPubMedGoogle Scholar
  19. 19.
    Hill, S.L., Wang, Y., Riachi, I., Schürmann, F., and Markram, H., Statistical connectivity provides a sufficient foundation for specific functional connectivity in neocortical neural microcircuits. Proc. Natl. Acad. Sci. U. S. A. 109:E2885–E2894, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Wang, R., Benner, T., Sorensen, A.G., and Wedeen, V.J., Diffusion toolkit: A software package for diffusion imaging data processing and tractography. Proc. Intl. Soc. Mag. Reson. Med. 15:3720, 2007.Google Scholar
  21. 21.
    Assaf, Y., Blumenfeld-Katzir, T., Yovel, Y., and Basser, P.J., AxCaliber: a method for measuring axon diameter distribution from dMRI. Magn. Reson. Med. 59:1347–1354, 2008.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Milne, M.L., and Conradi, M.S., Multi-exponential signal decay from diffusion in a single compartment. J. Magn. Reson. 197:87–90, 2009.CrossRefPubMedGoogle Scholar
  23. 23.
    U.C.L.A. (n.d.) LONI Image Data Archive (IDA). Available: Accessed 16 November 2012. (2012)
  24. 24.
    Zhang, Y., Brady, M., and Smith, S., Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging. 20:45–57, 2001.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Nicolás F . Lori
    • 1
    • 2
    • 3
    • 4
    • 5
  • Augustin Ibañez
    • 5
    • 6
    • 7
    • 8
    • 9
  • Rui Lavrador
    • 3
  • Lucia Fonseca
    • 10
    • 11
    • 12
  • Carlos Santos
    • 3
  • Rui Travasso
    • 3
    • 10
  • Artur Pereira
    • 13
  • Rosaldo Rossetti
    • 14
  • Nuno Sousa
    • 15
  • Victor Alves
    • 1
  1. 1.Algoritmi CentreUniversity of MinhoBragaPortugal
  2. 2.Laboratory of Neuroimaging and Neuroscience (LANEN), Institute of Translational and Cognitive Neuroscience (INCyT), INECO Foundation RosarioFavaloro UniversityRosarioArgentina
  3. 3.Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of MedicineUniversity of CoimbraCoimbraPortugal
  4. 4.INECO Neurociencias OroñoRosarioArgentina
  5. 5.Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Translational and Cognitive Neuroscience (INCyT), INECO FoundationFavaloro UniversityBuenos AiresArgentina
  6. 6.National Scientific and Technical Research Council (CONICET)Buenos AiresArgentina
  7. 7.Universidad Autónoma del CaribeBarranquillaColombia
  8. 8.Department of PsychologyUniversidad Adolfo IbáñezSantiagoChile
  9. 9.Centre of Excellence in Cognition and its DisordersAustralian Research Council (ACR)SydneyAustralia
  10. 10.Center for Physics Computation (CFC), Faculty of Science and TechnologyUniversity of CoimbraCoimbraPortugal
  11. 11.Maastricht UniversityMaastrichtNetherlands
  12. 12.Eindhoven University of TechnologyEindhovenNetherlands
  13. 13.IETTAUniversity of AveiroAveiroPortugal
  14. 14.LIACUniversity of PortoPortoPortugal
  15. 15.3B’sUniversity of MinhoBragaPortugal

Personalised recommendations