A Pulse Rate Estimation Algorithm Using PPG and Smartphone Camera

  • Sarah Ali Siddiqui
  • Yuan Zhang
  • Zhiquan Feng
  • Anton Kos
Mobile Systems
Part of the following topical collections:
  1. Advances in Big-Data based mHealth Theories and Applications

Abstract

The ubiquitous use and advancement in built-in smartphone sensors and the development in big data processing have been beneficial in several fields including healthcare. Among the basic vitals monitoring, pulse rate monitoring is the most important healthcare necessity. A multimedia video stream data acquired by built-in smartphone camera can be used to estimate it. In this paper, an algorithm that uses only smartphone camera as a sensor to estimate pulse rate using PhotoPlethysmograph (PPG) signals is proposed. The results obtained by the proposed algorithm are compared with the actual pulse rate and the maximum error found is 3 beats per minute. The standard deviation in percentage error and percentage accuracy is found to be 0.68 % whereas the average percentage error and percentage accuracy is found to be 1.98 % and 98.02 % respectively.

Keywords

Pulse rate PhotoPlethysmoGraph (PPG) Smartphone sensor Mobile health 

References

  1. 1.
    He, X., Goubran, R. A., Fellow, and Liu, X. P., Secondary peak detection of PPG signal for continuous cuffless arterial blood pressure measurement. IEEE Trans. Instrum. Meas. 63(6):1431–1439, 2014.CrossRefGoogle Scholar
  2. 2.
    Tsu-Hsun, F., Liu, S.-H., and Tang, K.-T., Heart rate extraction from photoplethysmogram waveform using wavelet multi-resolution analysis. J. Med. Biol. Eng. 28(4):229–232, 2008.Google Scholar
  3. 3.
    Li, H and Zhao H., Systolic blood pressure estimation using Android smart phones, 6th International Conference on Biomedical Engineering and Informatics (BMEI). 260–264, 2013.Google Scholar
  4. 4.
    Suzuki, A., and Ryu, K., Feature selection method for estimating systolic blood pressure using the taguchi method. IEEE Trans. Indust. Inform. 10(2):1077–1085, 2014.CrossRefGoogle Scholar
  5. 5.
    Shukla, S. N., Kakwani, K., Patra, A., Lahkar, B. K., Gupta, V. K., Jayakrishna, A., Vashisht, P., and Sreekanth, I., Noninvasive Cuffless blood pressure measurement by vascular transit time. 28th Int. Conf. VLSI Des. 14th Int. Conf. Embedded Syst. 535–540, 2015.Google Scholar
  6. 6.
    Chen, Z., Yang, X., Teo, J. T., and Ng, S. H., Noninvasive monitoring of blood pressure using optical ballistocardiography and photoplethysmograph approaches*. IEEE 35th Ann. Int. Conf. EMBS Osaka, Japan. 2425–2428 2013.Google Scholar
  7. 7.
    Visvanathan, A., Sinha, A. and Pal, A., Estimation of blood pressure levels from reflective photoplethysmograph using smart phones. IEEE 13 th Int. Conf. Bioinform. Bioeng. (BIBE). 2013.Google Scholar
  8. 8.
    Chou, C. -C., Huang, W. -C. and Fang, W. -C., An effective three way PPG acquiring and signal processing system by using square wave modulation. IEEE Int. Conf. Consumer Electron. (ICCE). 366–369, 2015.Google Scholar
  9. 9.
    Kondo, R., Bhuiyan, Md. S., Kawanaka, H. and Oguri, K., Separate estimation of long- and short-term systolic blood pressure variability from photoplethysmograph. IEEE 36 th Ann. Int. Conf. Eng. Med. Biol. Soc. (EMBC). 1851–1854, 2014.Google Scholar
  10. 10.
    Kumar, N., Agrawal, A., Deb, S., Cuffless BP measurement using a correlation study of pulse transient time and heart rate. Int. Conf. Adv. Comput., Commun. Inform. (ICACCI). 1538–1541, 2014.Google Scholar
  11. 11.
    Lourdes Albina Nirupa, J. and Jagadeesh Kumar V., Non-invasive measurement of hemoglobin content in blood. IEEE Int. Symp. Med. Measure. Appl. (MeMeA). 1–5, 2014.Google Scholar
  12. 12.
    Harbawi, M. A., Ibrahimy, M. I. and Motakabber, S. M. A., Photoplethysmography based remote health monitoring system. Proc. IEEE Int. Conf. Smart Instrument., Measure. Appl. (ICSIMA), Kuala Lumpur, Malaysia. 2013.Google Scholar
  13. 13.
    He, X., Goubranand, R. A. and Liu, X. P., Evaluation of the correlation between blood pressure and pulse transit time. IEEE Int. Symp. Med. Measure. Appl. Proc. (MeMeA). 2013.Google Scholar
  14. 14.
    Kwon, S., Kim, H. and Park, K. S., Validation of heart rate extraction using video imaging on a built-in camera system of a smartphone. Ann. Int. Conf. Eng. Med. Biol. Soc. (EMBC’12). 2174–2177, 2012.Google Scholar
  15. 15.
    Peng, R. C., Zhou, X. -C, Lin, W -H. and Zhang, Y. -T., Extraction of heart rate variability from smartphone photoplethysmograms. Comput. Math. Methods Med. 1–11, 2015.Google Scholar
  16. 16.
    Girish Rao Salanke, N. S., Samraj, A., Maheswari, N. and Sadhasivam, S., Enhancement in the design of biometric identification system based on photoplethysmography data. Proc. Int. Conf. Green High Perform. Comput. (ICGHPC), India. 1–6, 2013.Google Scholar
  17. 17.
    Zhang, Z., Pi, Z., and Liu, B., TROIKA: a general framework for heart rate monitoring using wrist-type photoplethysmographic signals during intensive physical exercise. IEEE Trans. Biomed. Eng. 62(2):522–531, 2015.CrossRefPubMedGoogle Scholar
  18. 18.
    Lee, B.-G., and Chung, W.-Y., Driver alertness monitoring using fusion of facial features and bio-signals. IEEE Sensors J. 12(7):2416–2422, 2012.CrossRefGoogle Scholar
  19. 19.
    Elgendi, M., On the analysis of fingertip photoplethysmogram signals. Curr. Cardiol. Rev. 8:14–25, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Naraharisetti, K. V. P. and Bawa, M., Comparison of different signal processing methods for reducing artifacts from photoplethysmograph signal. IEEE Int. Conf. Electro/Inform. Technol. (EIT). 1–8, 2011.Google Scholar
  21. 21.
    Utami, N., Setiawan, A. W., Zakaria, H., Mengko, T. R. and Mengko, R., Extracting blood flow parameters from photoplethysmograph signals: a review. 3rd Int. Conf. Instrument., Commun., Inform. Technol. Biomed. Eng. (ICICI-BME), Bandung. 403–407, 2013.Google Scholar
  22. 22.
    Shafqat, K., Langford, M., Pal, S. K. and Kyriacou, P. A., Estimation of venous oxygenation saturation using the finger Photoplethysmograph (PPG) waveform. IEEE 34th Ann. Int. Conf. EMBS, San Diego, California USA. 2905–2908, 2012.Google Scholar
  23. 23.
    Lee, C., SikShin, H. and Lee, M., Relations between ac-dc components and optical path length in photoplethysmography. J. Biomed. Optics. 16(7). 2011.Google Scholar
  24. 24.
    Lee, Y.-K., Kwon, O.-W., Shin, H. Y., Jo, J. and Lee, Y., Noise reduction of PPG signals using a particle filter for robust emotion recognition. IEEE Int. Conf. Consumer Electron-Berlin (ICCE-Berlin). 202–205, 2011.Google Scholar
  25. 25.
    Lao, C. K., Kin Che, U., Chen, W., Pun, S. H., Un Mak, P., Wan, F. and Vai, M. I., Portable heart rate detector based on photoplethysmography with android programmable devices for ubiquitous health monitoring system. Int. J. Adv. Telecomm. Electrotech., Sign. Syst. 2013.Google Scholar
  26. 26.
    Li, D., Zhao, H., and Dou, S., Anew signal decomposition to estimate breathing rate and heart rate from Photoplethysmography signal. Biomed. Sign. Process. Contrl. 19:89–95, 2015.CrossRefGoogle Scholar
  27. 27.
    Lavanya, M. P., Real time motion detection using background subtraction method and frame difference. Int. J. Sci. Res. (IJSR) 3(6):1857–1861, 2014.Google Scholar
  28. 28.
    Singla, N., Motion detection based on frame difference method. Int. J. Inform.Comput.Technol. 4(15):1559–1565, 2014.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Sarah Ali Siddiqui
    • 1
  • Yuan Zhang
    • 1
  • Zhiquan Feng
    • 1
  • Anton Kos
    • 2
  1. 1.Shandong Provincial Key Laboratory of Network Based Intelligent ComputingUniversity of JinanJinanChina
  2. 2.Faculty of Electrical EngineeringUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations