Advertisement

A New Strategy to Evaluate Technical Efficiency in Hospitals Using Homogeneous Groups of Casemix

How to Evaluate When There is Not DRGs?
  • Manuel Villalobos-Cid
  • Max Chacón
  • Pedro Zitko
  • Mario Inostroza-PontaEmail author
Systems-Level Quality Improvement
Part of the following topical collections:
  1. Systems-Level Quality Improvement

Abstract

The public health system has restricted economic resources. Because of that, it is necessary to know how the resources are being used and if they are properly distributed. Several works have applied classical approaches based in Data Envelopment Analysis (DEA) and Stochastic Frontier Analysis (SFA) for this purpose. However, if we have hospitals with different casemix, this is not the best approach. In order to avoid biases in the comparisons, other works have recommended the use of hospital production data corrected by the weights from Diagnosis Related Groups (DRGs), to adjust the casemix of hospitals. However, not all countries have this tool fully implemented, which limits the efficiency evaluation. This paper proposes a new approach for evaluating the efficiency of hospitals. It uses a graph-based clustering algorithm to find groups of hospitals that have similar production profiles. Then, DEA is used to evaluate the technical efficiency of each group. The proposed approach is tested using the production data from 2014 of 193 Chilean public hospitals. The results allowed to identify different performance profiles of each group, that differs from other studies that employs data from partially implemented DRGs. Our results are able to deliver a better description of the resource management of the different groups of hospitals. We have created a website with the results (bioinformatic.diinf.usach.cl/publichealth). Data can be requested to the authors.

Keywords

Data Envelopment Analysis Hospital Technical efficiency Casemix Diagnosis-related groups 

Notes

Acknowledgments

The authors would like to thank the Chilean Ministry of Health (Ministerio de Salud, MINSAL) and the South Metropolitan Health Service (Servicio de Salud Metropolitano Sur, SSMS) for their cooperation providing the data needed for this academic research. Special acknowledgements to Managers, Finance, Statistics and DRGs departments. MV-C would like to thank CITIAPS. This article was partially funded by Proyect PMI USA1204.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10916_2016_458_MOESM1_ESM.tex (57 kb)
(TEX 56.5 KB)

References

  1. 1.
    Alonso, J., Clifton, J., Díaz-Fuentes, D., The impact of new public management on efficiency: An analysis of Madrid’s hospitals. Health Policy 119(3):333–340, 2015.CrossRefPubMedGoogle Scholar
  2. 2.
    Al-Amin, M., Makarem, S. C., Rosko, M.: Efficiency and hospital effectiveness in improving hospital consumer assessment of healthcare providers and systems ratings. Health Care Manage Rev. 2015 Jun 19. [Epub ahead of print] PubMed PMID:26099007
  3. 3.
    Hadji, B., Meyer, R., Melikeche, S., Escalon, S., Degoulet, P., Assessing the relationships between hospital resources and activities: A systematic review. J. Med. Syst. 38(10):127–148, 2014.CrossRefPubMedGoogle Scholar
  4. 4.
    Asandului, L., Roman, M., Fatulescu, P., The efficiency of healthcare systems in Europe: A data envelopment analysis approach. Procedia Econ. Finance 10:261–268, 2014. International Conference on Applied Statistics (ICAS) 2013.CrossRefGoogle Scholar
  5. 5.
    Goudarzi, R., Pourreza, A., Shokoohi, M., Askari, R., Mahdavi, M., Moghri, J., Technical efficiency of teaching hospitals in Iran: The use of Stochastic Frontier Analysis, 1999–2011. Int. J. Health Policy Manag. 3(2): 91–97, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    O’Neill, L., Rauner, M., Heidenberger, K., Kraus, M., A cross-national comparison and taxonomy of DEA-based hospital efficiency studies. Socio Econ. Plan. Sci. 42(3):158–189, 2008.CrossRefGoogle Scholar
  7. 7.
    Rezaee, M. J., and Karimdadi, A., Do geographical locations affect in hospitals performance? A multi-group data envelopment analysis. J. Med. Syst. 39(9):278, 2015.CrossRefGoogle Scholar
  8. 8.
    Herwartz, H., and Strumann, C., Hospital efficiency under prospective reimbursement schemes: An empirical assessment for the case of Germany. Eur. J. Health Econ. 15(2):175–186, 2014.CrossRefPubMedGoogle Scholar
  9. 9.
    Santelices, E., Ormeño, H., Delgado, M., Christopher, M., Valdés, R., Durán, L., Analisis de la eficiencia técnica hospitalaria 2011́. Rev. Méd. Chile 141:332–337, 2013.CrossRefGoogle Scholar
  10. 10.
    Linna, M., Häkkinen, U., Peltola, M., Magnussen, J., Anthun, K., Kittelsen, S., Roed, A., Olsen, K., Medin, E., Rehnberg, C., Measuring cost efficiency in the Nordic Hospitals—a cross-sectional comparison of public hospitals in 2002. Health Care Manag. Sci. 13(4):346–357, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Vitikainen, K., Linna, M., Street, A., Substituting inpatient for outpatient care: What is the impact on hospital costs and efficiency? Eur. J. Health Econ. 11(4):395–404, 2010.CrossRefPubMedGoogle Scholar
  12. 12.
    Magnussen, J., and Nyland, K., Measuring efficiency in clinical departments. Health Policy 87(1):1–7, 2008.CrossRefPubMedGoogle Scholar
  13. 13.
    Gannon, B., Testing for variation in technical efficiency of hospitals in Ireland. Technical report, Economic and Social Research Institute (ESRI), 2005.Google Scholar
  14. 14.
    Wang, Z., Liu, R., Li, P., Jiang, C., Hao, M., How to make diagnosis related groups payment more feasible in developing countries—A case study in Shanghai, China. Iran. J. Public Health 43(5):572–578, 2014.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Jurges, H., and Koberlein, J., What explains DRG upcoding in neonatology? The roles of financial incentives and infant health. J. Health Econ. 43:13–26, 2015.CrossRefPubMedGoogle Scholar
  16. 16.
    Jian, W., Lu, M., Han, W., Hu, M.: Introducing diagnosis-related groups: Is the information system ready? Int. J. Health Plan. Manage, 2014 Aug 11. doi: 10.1002/hpm.2270
  17. 17.
    Wardle, G., Wodchis, W. P., Laporte, A., Anderson, G.M, Ross-Baker, G., The sensitivity of adverse event cost estimates to diagnostic coding error. Health Serv. Res. 47:984–1007 , 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Schousboe, J. T., Paudel, M. L., Taylor, B. C., Mau, B. A., Virnig, L. W., Ensrud, K. E., Dowd, B. E., Estimation of standardised hospital costs from Medicare claims that reflect resource requirements for care: Impact for cohort studies linked to Medicare claims. Health Serv. Res. 49(3):929–949, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Malyon, R., Zhao, Y., Oates, B., Differences in the cost of admitted patient care for indigenous people and people from remote locations. Aust. Health Rev. 37(1):26–31, 2013.CrossRefPubMedGoogle Scholar
  20. 20.
    Jordan, I., Barry, H., Clancy, M., O’Toole, D., Machale, S., Financial impact of accurate discharge coding in a liaison psychiatry service. J. Psychosom. Res. 73(6):476–478, 2012.CrossRefPubMedGoogle Scholar
  21. 21.
    Gan, G., Ma, C., Wu, J., , Data clustering - theory, algorithms, and applications. SIAM, 2007.Google Scholar
  22. 22.
    Inostroza-Ponta, M., An integrated and scalable approach based on combinatorial optimisation techniques for the analysis of microarray data. University of Newcastle. School of Electrical Engineering and Computer Science, 2008.Google Scholar
  23. 23.
    Jay, J. J., Eblen, J. D., Zhang, Y., Benson, M., Perkins, A. D., Saxton, A. M., Voy, B. H., Chesler, E. J., Langston, M. A., A systematic comparison of genome-scale clustering algorithms. BMC Bioinformatics 13 (Suppl 10):S7, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Navulur, K., Multispectral image analysis using the object-oriented paradigm. Hoboken: CRC Press, 2006.CrossRefGoogle Scholar
  25. 25.
    Gang, C., Data envelopment analysis software and MaxDEA, 2014.Google Scholar
  26. 26.
    Chen, G., Jaradat, S. A., Banerjee, N., Tanaka, T. S., Ko, M. S. H., Zhang, M. Q., Evaluation and comparison of clustering algorithms in anglyzing es cell gene expression data. Stat. Sin. 12:241–262, 2002.Google Scholar
  27. 27.
    Sodani, P. R., and Madnani, G. M. K., Measuring hospital performance through data envelopment analysis: Understanding basic concepts to help novice researchers. J. Health Manag. 10(1):129–142, 2008.CrossRefGoogle Scholar
  28. 28.
    Barnum, D., Johnson, M., Gleason, J., Importance of statistical evidence in estimating valid DEA scores. J. Med. Syst. 40(3):1, 2015.Google Scholar
  29. 29.
    Inostroza-Ponta, M., Berretta, R., Moscato, P., QAPgrid: A two level QAP-based approach for large-scale data analysis and visualisation. PLoS ONE 6(1):e14468, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Clark, M. B., Johnston, R. L., Inostroza-Ponta, M., Fox, A. H., Fortini, E., Moscato, P., Dinger, M. E., Mattick, J. S., Genome-wide analysis of long noncoding RNA stability. Genome Res. 22(5):885–898, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ramirez-Castrillon, M., Mendes, S. D., Inostroza-Ponta, M., Valente, P., (GTG)5 MSP-PCR fingerprinting as a technique for discrimination of wine associated yeasts? PLoS ONE 9(8):e105870, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Arechabala-Mantuliz, M., Barrios-Araya, S., Catoni-Salamanca, M., Palma-Castro, E., Ibacache-Celedón, Y., Richards, J., Validación de un instrumento de medición de cuidados según dependencia y riesgo en pacientes en terapia de hemodiálisis crónica. Aquichán 14:473–484, 2014.CrossRefGoogle Scholar
  33. 33.
    Kumar, N., Efficiency analysis of banks using DEA: A review. Int. J. Adv. Res. Innov. 1:120–126, 2014.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Manuel Villalobos-Cid
    • 1
  • Max Chacón
    • 1
  • Pedro Zitko
    • 2
  • Mario Inostroza-Ponta
    • 1
    Email author
  1. 1.Departamento de Ingeniería Informática, Facultad de IngenieríaUniversidad de Santiago de ChileSantiagoChile
  2. 2.Unidad de Estudios Asistenciales, Hospital Barros Luco Trudeau, Facultad de MedicinaUniversidad Diego PortalesSantiagoChile

Personalised recommendations