Skip to main content

Computer-Aided Diagnosis of Parkinson’s Disease Using Enhanced Probabilistic Neural Network

Abstract

Early and accurate diagnosis of Parkinson’s disease (PD) remains challenging. Neuropathological studies using brain bank specimens have estimated that a large percentages of clinical diagnoses of PD may be incorrect especially in the early stages. In this paper, a comprehensive computer model is presented for the diagnosis of PD based on motor, non-motor, and neuroimaging features using the recently-developed enhanced probabilistic neural network (EPNN). The model is tested for differentiating PD patients from those with scans without evidence of dopaminergic deficit (SWEDDs) using the Parkinson’s Progression Markers Initiative (PPMI) database, an observational, multi-center study designed to identify PD biomarkers for diagnosis and disease progression. The results are compared to four other commonly-used machine learning algorithms: the probabilistic neural network (PNN), support vector machine (SVM), k-nearest neighbors (k-NN) algorithm, and classification tree (CT). The EPNN had the highest classification accuracy at 92.5 % followed by the PNN (91.6 %), k-NN (90.8 %) and CT (90.2 %). The EPNN exhibited an accuracy of 98.6 % when classifying healthy control (HC) versus PD, higher than any previous studies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Acharya, U. R., Vidya, S., Bhat, S., Adeli, H., and Adeli, A., Computer-aided diagnosis of alcoholism-related EEG signals. Epilepsy Behav. 41:257–263, 2014.

    Article  PubMed  Google Scholar 

  2. Adeli, H., Ghosh-Dastidar, S., and Dadmehr, N., Alzheimer’s disease and models of computation: Imaging, classification, and neural models. J. Alzheimers Dis. 7(3):187–199, 2005.

    PubMed  Google Scholar 

  3. Adeli, H., Ghosh-Dastidar, S., and Dadmehr, N., Alzheimer’s disease: Models of computation and analysis of EEGs. Clin. EEG Neurosci. 36(3):131–140, 2005.

    Article  PubMed  Google Scholar 

  4. Adeli, H., Ghosh-Dastidar, S., and Dadmehr, N., A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy. IEEE Trans. Biomed. Eng. 54(2):205–211, 2007.

    Article  PubMed  Google Scholar 

  5. Adeli, H., Ghosh-Dastidar, S., and Dadmehr, N., A Spatio-temporal wavelet-chaos methodology for EEG-based diagnosis of Alzheimer’s disease. Neurosci. Lett. 444(2):190–194, 2008.

    CAS  Article  PubMed  Google Scholar 

  6. Adeli, H., and Hung, S. L., Machine learning - neural networks, genetic algorithms, and fuzzy sets. Wiley, New York, 1995.

    Google Scholar 

  7. Aerts, M. B., Esselink, R. A., Post, B., van de Warrensburg, P. B., and Bloem, B. R., Improving the diagnostic accuracy in parkinsonism: A three-pronged approach. Pract. Neurol. 12(2):77–87, 2012.

    Article  PubMed  Google Scholar 

  8. Ahmadlou, A., Adeli, H., and Adeli, A., Fractality and a wavelet-Chao methodology for EEG-based diagnosis of Alzheimer’s disease. Alzheimer Dis. Assoc. Disord. 25(1):85–92, 2011.

    Article  PubMed  Google Scholar 

  9. Ahmadlou, M., and Adeli, H., Enhanced probabilistic neural networks with local decision circles: A robust classifier. Integr. Comput. Aided. Eng. 17:197–210, 2010.

    Google Scholar 

  10. Ahmadlou, M., and Adeli, H., Wavelet-synchronization methodology: A new approach for EEG-based diagnosis of ADHD. Clin. EEG Neurosci. 41(1):1–10, 2010.

    Article  PubMed  Google Scholar 

  11. Ahmadlou, M., Adeli, H., and Adeli, A., Fractality and a wavelet-chaos-neural network methodology for EEG-based diagnosis of autistic spectrum disorder. J. Clin. Neurophysiol. 7(5):328–333, 2010.

    Article  Google Scholar 

  12. Ahmadlou, M., Adeli, H., and Adeli, A., Fractality analysis of frontal brain in major depressive disorder. Int. J. Psychophysiol. 85(2):206–211, 2012.

    Article  PubMed  Google Scholar 

  13. Ahmadlou, M., Adeli, H., and Adeli, A., Graph theoretical analysis of organization of functional brain networks in ADHD. Clin. EEG Neurosci. 43(1):5–13, 2012.

    Article  PubMed  Google Scholar 

  14. Ahmadlou, M., Adeli, H., and Adeli, A., Spatio-Temporal Analysis of Relative Convergence (STARC) of EEGs reveals differences between brain dynamics of depressive women and men. Clin. EEG Neurosci. 44:175–181, 2013.

    Article  PubMed  Google Scholar 

  15. Ahmadlou, M., Adeli, A., Bajo, R., and Adeli, H., Complexity of functional connectivity networks in mild cognitive impairment patients during a working memory task. Clin. Neurophysiol. 125(4):694–702, 2013.

    Article  Google Scholar 

  16. Alexandridis, A., Evolving RBF neural networks for adaptive soft-sensor design. Int. J. Neural Syst. 23(6):1350029, 2013 (14 pages).

    Article  PubMed  Google Scholar 

  17. Babu, G. S., Suresh, S., and Mahanand, B. S., A novel PBL-McRBFN-RFE approach for identification of critical brain regions responsible for Parkinson’s disease. Expert Syst. Appl. 41(2):478–488, 2014.

    Article  Google Scholar 

  18. Badawy, R. A. B., Vogrin, S. J., Lai, A., and Cook, M. J., On the midway to epilepsy; Are cortical excitability measures in patients with isolated seizures normal? Int. J. Neural Syst. 24(2):1430002, 2014 (7 pages).

    Article  PubMed  Google Scholar 

  19. Bauer, P. R., Kalitzin, S., Zijlmans, M., Sander, J. W., and Visser, G., Cortical excitability as a clinical marker in epilepsy: A review of the clinical application of Transcranial Magnetic Stimulation. Int. J. Neural Syst. 24(2):1430001, 2014 (21 pages).

    Article  PubMed  Google Scholar 

  20. Butcher, J. B., Day, C. R., Austin, J. C., Haycock, P. W., Verstraeten, D., and Schrauwen, B., Defect detection in reinforced concrete using random neural architectures. Comput. Aided Civ. Infrastruct. Eng. 29(3):191–20, 2014.

    Article  Google Scholar 

  21. Castillo, E., Peteiro-Barral, D., Guijarro Berdinas, B., and Fontenla-Romero, O., Distributed one-class support vector machine. Int. J. Neural Syst. 25:7, 2015 (17 pages).

    Article  Google Scholar 

  22. Davie, C. A., A review of Parkinson’s disease. Br. Med. Bull. 86(1):109–127, 2008.

    CAS  Article  PubMed  Google Scholar 

  23. De Dombal, F. T., Leaper, D. J., Staniland, J. R., McCann, A. P., and Horrocks, J. C., Computer-aided diagnosis of acute abdominal pain. Br. Med. J. 2(5804):9–13, 1972.

    PubMed Central  Article  PubMed  Google Scholar 

  24. De Lau, L. M., and Breteler, M. M., Epidemiology of Parkinson’s disease. Lancet Neurol. 5(6):525–535, 2006.

    Article  PubMed  Google Scholar 

  25. De Rosa, A., Carducci, C., Carducci, C., Peluso, S., Lieto, M., Mazzella, A., Saccà, F., Brescia Morra, V., Pappatà, S., Leuzzi, V., and De Michele, G., Screening for dopa-responsive dystonia in patients with Scans Without Evidence of Dopaminergic Deficiency (SWEDD). J. Neurol. 261(11):2204–2208, 2014.

    Article  PubMed  Google Scholar 

  26. Doty, R. L., Shaman, P., Kimmelman, C. P., and Dann, M. S., University of Pennsylvania smell identification test: A rapid quantitative olfactory function test for the clinic. Laryngoscope 94:176–178, 1984.

    CAS  Article  PubMed  Google Scholar 

  27. Goetz, C. G., Tilley, B. C., Shaftman, S. R., Stebbins, G. T., Fahn, S., Martinez-Martin, P., Poewe, W., LaPelle, N., and Movement Disorder Society UPDRS Revision Task Force, Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov. Disord. 23(15):2129–2170, 2008.

    Article  PubMed  Google Scholar 

  28. Illan, I. A., Gorrz, J. M., Ramirez, J., Segovia, F., Jimenez-Hoyuela, J. M., and Ortega Lozano, S. J., Automatic assistance to Parkinson’s disease diagnosis in DaTSCAN SPECT imaging. Med. Phys. 39(10):5971–5980, 2012.

    CAS  Article  PubMed  Google Scholar 

  29. Jankovic, J., Parkinson’s disease: Clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry 79(4):368–376, 2008.

    CAS  Article  PubMed  Google Scholar 

  30. Kwon, M., Kavuri, S., and Lee, M., Action-perception cycle learning for incremental emotion recognition in a movie clip using 3D fuzzy GIST based on visual and EEG signals. Integr. Comput. Aided Eng. 21(3):295–310, 2014.

    Google Scholar 

  31. Lee, M. J., Kim, S. L., Lyoo, C. H., and Lee, M. S., Kinematic analysis in patients with Parkinson’s disease and SWEDD. J Park. Dis. 4(3):421–430, 2014.

    CAS  Google Scholar 

  32. Li, D., Xu, L., Goodman, E., Xu, Y., and Wu, Y., Integrating a statistical background-foreground extraction algorithm and SVM classifier for pedestrian detection and tracking. Integr. Comput. Aided Eng. 20(3):201–216, 2013.

    Google Scholar 

  33. Lin, L. C., Ouyang, C. S., Chiang, C. T., Yang, R. C., Wu, R. C., and Wu, H. C., Early prediction of medication refractoriness in children with idiopathic epilepsy based on scalp EEG analysis. Int. J. Neural Syst. 24(7):1450023, 2014 (16 pages).

    Article  PubMed  Google Scholar 

  34. Marek, K., Jennings, D., Lasch, S., Siderowf, A., Tanner, C., Simuni, T., Coffey, C., and Taylor, P., The Parkinson Progression Marker Initiative (PPMI). Prog. Neurobiol. 95(4):629–635, 2011.

    Article  Google Scholar 

  35. Liu, C., Wang, J., Chen, Y. Y., Deng, B., Wei, X. L., and Li, H. Y., Closed-loop control of the thalamocortical relay neuron’s Parkinsonian state based on slow variable. Int. J. Neural Syst. 23(4):1350017, 2013 (13 pages).

    Article  PubMed  Google Scholar 

  36. Luo, C., Zhang, Y., Cao, W., Huang, Y., Yang, F., Wang, J., Tu, S., Wang, X., and Yao, D., Altered Structural and functional feature of striatocortical circuit in benign epilepsy with cectrotemporal spikes. Int. J. Neural Syst. 25(6):1550027, 2015 (13 pages).

    Article  PubMed  Google Scholar 

  37. Martinez-Murcia, F. J., Gorriz, J. M., Ramirez, J., Illan, I. A., and The Parkinson’s Progression Markers Initiative, Automated Detection of Parkinsonism Using Significance Measures and Component Analysis in DatSCAN imaging. Neurocomputing 126:58–70, 2014.

    Article  Google Scholar 

  38. Mian, O. S., Schneider, S. A., Schwingenschuh, P., Bhatia, K. P., and Day, B. L., Gait in SWEDDs patients: comparison with Parkinson’s disease patients and healthy controls. Mov. Disord. 26(7):1266–1273, 2011.

    Article  PubMed  Google Scholar 

  39. Parazzini, M., Fiocchi, S., Liorni, I., Priori, A., and Ravazzani, P., Computational modelling of transcranial direct current stimulation in the child brain: Implications for the treatment of refractory childhood focal epilepsy. Int. J. Neural Syst. 24(2):1430006, 2014 (10 pages).

    Article  PubMed  Google Scholar 

  40. Prashanth, R., Roy, S. D., Mandal, P. K., and Ghosh, S., Automatic classification and prediction models for early Parkinson’s disease diagnosis from SPECT imaging. Expert Syst. Appl. 41:3333–3342, 2014.

    Article  Google Scholar 

  41. Salvatore, C., Cerasa, A., Augimeri, A., Quattrone, A., Castiglioni, I., Gallivanone, F., Gilardi, M. C., and Morelli, M., Machine learning on brain MRI data for differential diagnosis of Parkinson’s disease and progressive supranuclear palsy. J. Neurosci. Methods 222:230–237, 2014.

    CAS  Article  PubMed  Google Scholar 

  42. Sankari, Z., and Adeli, H., Probabilistic neural networks for diagnosis of Alzheimer’s disease using conventional and wavelet coherence. J. Neurosci. Methods 197(1):165–170, 2011.

    Article  PubMed  Google Scholar 

  43. Sankari, Z., Adeli, H., and Adeli, A., Intrahemispheric, interhemispheric and distal EEG coherence in Alzheimer’s disease. Clin. Neurophysiol. 122(5):897–906, 2011.

    Article  PubMed  Google Scholar 

  44. Sankari, Z., Adeli, H., and Adeli, A., Wavelet coherence model for diagnosis of Alzheimer’s disease. Clin. EEG Neurosc. 43(3):268–278, 2012.

    Article  Google Scholar 

  45. Schneider, S. A., Edwards, M. J., Mir, P., Cordivari, C., Hooker, J., Dickson, J., Quinn, N., and Bhatia, K. P., Patients with adult-onset dystonic tremor resembling parkinsonian tremor have scans without evidence of dopaminergic deficit (SWEDDs). Mov. Disord. 22(15):2210–2215, 2007.

    Article  PubMed  Google Scholar 

  46. Schwingenschuh, P., Ruge, D., Edwards, M. J., Terranova, C., Katschnig, P., Carrillo, F., Silveira-Moriyama, L., and Bhatia, K. P., Distinguishing SWEDDs patients with asymmetric resting tremor from Parkinson’s disease: a clinical and electrophysiological study. Mov. Disord. 25(5):560–569, 2010.

    PubMed Central  Article  PubMed  Google Scholar 

  47. Siddique, N., and Adeli, H., Computational intelligence - synergies of fuzzy logic, neural networks and evolutionary computing. Wiley, West Sussex, 2013.

    Book  Google Scholar 

  48. Silveira-Moriyama, L., Schwingenschuh, P., O’Donnell, A., Schneider, S. A., Mir, P., Carrillo, F., Terranova, C., Petrie, A., Grosset, D. G., Quinn, N. P., Bhatia, K. P., and Lees, A. J., Olfaction in patients with suspected Parkinsonism and scans without evidence of dopaminergic deficit (SWEDDs). J. Neurol. Neurosurg. Psychiatry 80(7):744–748, 2009.

    CAS  Article  PubMed  Google Scholar 

  49. Specht, D. F., Probabilistic neural networks. Neural Netw. 3:109–118, 1990.

    Article  Google Scholar 

  50. Su, F., Wang, J., Deng, B., Wei, X. L., Chen, Y. Y., and Li, H. Y., Adaptive control of Parkinson’s state based on a nonlinear computational model with unknown parameters. Int. J. Neural Syst. 25(1):1450030, 2015 (13 pages).

    Article  PubMed  Google Scholar 

  51. Story, B. A., and Fry, G. T., A structural impairment detection system using competitive arrays of artificial neural networks. Comput. Aided Civ. Infrastruct. Eng. 29(3):180–190, 2014.

    Article  Google Scholar 

  52. Su, F., Wang, J., Deng, B., Wei, X. L., Chen, Y. Y., and Li, H. Y., Adaptive control of Parkinson’s state based on a nonlinear computational model with unknown parameters. Int. J. Neural Syst. 25(1):1450030, 2015 (13 pages).

    Article  PubMed  Google Scholar 

  53. Tolosa, E., Wenning, G., and Poewe, W., The diagnosis of Parkinson’s disease. Lancet Neurol. 5(1):75–86, 2006.

    Article  PubMed  Google Scholar 

  54. Visser, M., Marinus, J., Stiggelbout, A. M., and Van Hilten, J. J., Assessment of autonomic dysfunction in Parkinson’s disease: The SCOPA-AUT. Mov. Disord. 19(11):1306–1312, 2004.

    Article  PubMed  Google Scholar 

  55. Yang, H. J., Kim, Y. E., Yun, J. Y., Ehm, G., Kim, H. J., and Jeon, B. S., Comparison of sleep and other non-motor symptoms between SWEDDs patients and de novo Parkinson’s disease patients. Parkinsonism Relat. Disord. 20(12):1419–1422, 2014.

    Article  PubMed  Google Scholar 

  56. Yuan, Q., Zhou, W., Yuan, S., Li, X., Wang, J., and Jia, G., Epileptic EEG classification based on kernel sparse representation. Int. J. Neural Syst. 24(4):1450015, 2014 (13 pages).

    Article  PubMed  Google Scholar 

  57. Zhang, C., Wang, H., Wang, H., and Wu, M., EEG-based expert system using complexity measures and probability density function control in alpha sub-band. Integr. Comput. Aided Eng. 20(4):391–405, 2013.

    CAS  Google Scholar 

  58. Zhang, Y., and Zhou, W., Multifractal analysis and relevance vector machine-based automatic seizure detection in intracranial. Int. J. Neural Syst. 25(6):1550020, 2015 (14 pages).

    Article  PubMed  Google Scholar 

  59. Zhou, L. R., Ou, J. P., and Yan, G. R., Response surface method based on radial basis functions for modeling large-scale structures in model updating. Comput. Aided Civ. Infrastruct. Eng. 28(3):210–226, 2013.

    Article  Google Scholar 

Download references

Acknowledgments

PPMI – a public-private partnership – is funded by the Michael J. Fox Foundation for Parkinson’s Research and funding partners, including AbbVie, Avid, Biogen, Bristol-Myers Squibb, Covance, GE Healthcare, Genentech, GlaxoSmithKline, Eli Lilly and Company, Lundbeck, Merck, Meso Scale Discovery, Pfizer, Piramal Imaging, Roche, Servier, and UCB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hojjat Adeli.

Additional information

This article is part of the Topical Collection on Patient Facing Systems

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hirschauer, T.J., Adeli, H. & Buford, J.A. Computer-Aided Diagnosis of Parkinson’s Disease Using Enhanced Probabilistic Neural Network. J Med Syst 39, 179 (2015). https://doi.org/10.1007/s10916-015-0353-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-015-0353-9

Keywords

  • Computer-aided diagnosis
  • Parkinson’s disease
  • Enhanced probabilistic neural networks