Acharya, U. R., Vidya, S., Bhat, S., Adeli, H., and Adeli, A., Computer-aided diagnosis of alcoholism-related EEG signals. Epilepsy Behav. 41:257–263, 2014.
Article
PubMed
Google Scholar
Adeli, H., Ghosh-Dastidar, S., and Dadmehr, N., Alzheimer’s disease and models of computation: Imaging, classification, and neural models. J. Alzheimers Dis. 7(3):187–199, 2005.
PubMed
Google Scholar
Adeli, H., Ghosh-Dastidar, S., and Dadmehr, N., Alzheimer’s disease: Models of computation and analysis of EEGs. Clin. EEG Neurosci. 36(3):131–140, 2005.
Article
PubMed
Google Scholar
Adeli, H., Ghosh-Dastidar, S., and Dadmehr, N., A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy. IEEE Trans. Biomed. Eng. 54(2):205–211, 2007.
Article
PubMed
Google Scholar
Adeli, H., Ghosh-Dastidar, S., and Dadmehr, N., A Spatio-temporal wavelet-chaos methodology for EEG-based diagnosis of Alzheimer’s disease. Neurosci. Lett. 444(2):190–194, 2008.
CAS
Article
PubMed
Google Scholar
Adeli, H., and Hung, S. L., Machine learning - neural networks, genetic algorithms, and fuzzy sets. Wiley, New York, 1995.
Google Scholar
Aerts, M. B., Esselink, R. A., Post, B., van de Warrensburg, P. B., and Bloem, B. R., Improving the diagnostic accuracy in parkinsonism: A three-pronged approach. Pract. Neurol. 12(2):77–87, 2012.
Article
PubMed
Google Scholar
Ahmadlou, A., Adeli, H., and Adeli, A., Fractality and a wavelet-Chao methodology for EEG-based diagnosis of Alzheimer’s disease. Alzheimer Dis. Assoc. Disord. 25(1):85–92, 2011.
Article
PubMed
Google Scholar
Ahmadlou, M., and Adeli, H., Enhanced probabilistic neural networks with local decision circles: A robust classifier. Integr. Comput. Aided. Eng. 17:197–210, 2010.
Google Scholar
Ahmadlou, M., and Adeli, H., Wavelet-synchronization methodology: A new approach for EEG-based diagnosis of ADHD. Clin. EEG Neurosci. 41(1):1–10, 2010.
Article
PubMed
Google Scholar
Ahmadlou, M., Adeli, H., and Adeli, A., Fractality and a wavelet-chaos-neural network methodology for EEG-based diagnosis of autistic spectrum disorder. J. Clin. Neurophysiol. 7(5):328–333, 2010.
Article
Google Scholar
Ahmadlou, M., Adeli, H., and Adeli, A., Fractality analysis of frontal brain in major depressive disorder. Int. J. Psychophysiol. 85(2):206–211, 2012.
Article
PubMed
Google Scholar
Ahmadlou, M., Adeli, H., and Adeli, A., Graph theoretical analysis of organization of functional brain networks in ADHD. Clin. EEG Neurosci. 43(1):5–13, 2012.
Article
PubMed
Google Scholar
Ahmadlou, M., Adeli, H., and Adeli, A., Spatio-Temporal Analysis of Relative Convergence (STARC) of EEGs reveals differences between brain dynamics of depressive women and men. Clin. EEG Neurosci. 44:175–181, 2013.
Article
PubMed
Google Scholar
Ahmadlou, M., Adeli, A., Bajo, R., and Adeli, H., Complexity of functional connectivity networks in mild cognitive impairment patients during a working memory task. Clin. Neurophysiol. 125(4):694–702, 2013.
Article
Google Scholar
Alexandridis, A., Evolving RBF neural networks for adaptive soft-sensor design. Int. J. Neural Syst. 23(6):1350029, 2013 (14 pages).
Article
PubMed
Google Scholar
Babu, G. S., Suresh, S., and Mahanand, B. S., A novel PBL-McRBFN-RFE approach for identification of critical brain regions responsible for Parkinson’s disease. Expert Syst. Appl. 41(2):478–488, 2014.
Article
Google Scholar
Badawy, R. A. B., Vogrin, S. J., Lai, A., and Cook, M. J., On the midway to epilepsy; Are cortical excitability measures in patients with isolated seizures normal? Int. J. Neural Syst. 24(2):1430002, 2014 (7 pages).
Article
PubMed
Google Scholar
Bauer, P. R., Kalitzin, S., Zijlmans, M., Sander, J. W., and Visser, G., Cortical excitability as a clinical marker in epilepsy: A review of the clinical application of Transcranial Magnetic Stimulation. Int. J. Neural Syst. 24(2):1430001, 2014 (21 pages).
Article
PubMed
Google Scholar
Butcher, J. B., Day, C. R., Austin, J. C., Haycock, P. W., Verstraeten, D., and Schrauwen, B., Defect detection in reinforced concrete using random neural architectures. Comput. Aided Civ. Infrastruct. Eng. 29(3):191–20, 2014.
Article
Google Scholar
Castillo, E., Peteiro-Barral, D., Guijarro Berdinas, B., and Fontenla-Romero, O., Distributed one-class support vector machine. Int. J. Neural Syst. 25:7, 2015 (17 pages).
Article
Google Scholar
Davie, C. A., A review of Parkinson’s disease. Br. Med. Bull. 86(1):109–127, 2008.
CAS
Article
PubMed
Google Scholar
De Dombal, F. T., Leaper, D. J., Staniland, J. R., McCann, A. P., and Horrocks, J. C., Computer-aided diagnosis of acute abdominal pain. Br. Med. J. 2(5804):9–13, 1972.
PubMed Central
Article
PubMed
Google Scholar
De Lau, L. M., and Breteler, M. M., Epidemiology of Parkinson’s disease. Lancet Neurol. 5(6):525–535, 2006.
Article
PubMed
Google Scholar
De Rosa, A., Carducci, C., Carducci, C., Peluso, S., Lieto, M., Mazzella, A., Saccà, F., Brescia Morra, V., Pappatà, S., Leuzzi, V., and De Michele, G., Screening for dopa-responsive dystonia in patients with Scans Without Evidence of Dopaminergic Deficiency (SWEDD). J. Neurol. 261(11):2204–2208, 2014.
Article
PubMed
Google Scholar
Doty, R. L., Shaman, P., Kimmelman, C. P., and Dann, M. S., University of Pennsylvania smell identification test: A rapid quantitative olfactory function test for the clinic. Laryngoscope 94:176–178, 1984.
CAS
Article
PubMed
Google Scholar
Goetz, C. G., Tilley, B. C., Shaftman, S. R., Stebbins, G. T., Fahn, S., Martinez-Martin, P., Poewe, W., LaPelle, N., and Movement Disorder Society UPDRS Revision Task Force, Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov. Disord. 23(15):2129–2170, 2008.
Article
PubMed
Google Scholar
Illan, I. A., Gorrz, J. M., Ramirez, J., Segovia, F., Jimenez-Hoyuela, J. M., and Ortega Lozano, S. J., Automatic assistance to Parkinson’s disease diagnosis in DaTSCAN SPECT imaging. Med. Phys. 39(10):5971–5980, 2012.
CAS
Article
PubMed
Google Scholar
Jankovic, J., Parkinson’s disease: Clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry 79(4):368–376, 2008.
CAS
Article
PubMed
Google Scholar
Kwon, M., Kavuri, S., and Lee, M., Action-perception cycle learning for incremental emotion recognition in a movie clip using 3D fuzzy GIST based on visual and EEG signals. Integr. Comput. Aided Eng. 21(3):295–310, 2014.
Google Scholar
Lee, M. J., Kim, S. L., Lyoo, C. H., and Lee, M. S., Kinematic analysis in patients with Parkinson’s disease and SWEDD. J Park. Dis. 4(3):421–430, 2014.
CAS
Google Scholar
Li, D., Xu, L., Goodman, E., Xu, Y., and Wu, Y., Integrating a statistical background-foreground extraction algorithm and SVM classifier for pedestrian detection and tracking. Integr. Comput. Aided Eng. 20(3):201–216, 2013.
Google Scholar
Lin, L. C., Ouyang, C. S., Chiang, C. T., Yang, R. C., Wu, R. C., and Wu, H. C., Early prediction of medication refractoriness in children with idiopathic epilepsy based on scalp EEG analysis. Int. J. Neural Syst. 24(7):1450023, 2014 (16 pages).
Article
PubMed
Google Scholar
Marek, K., Jennings, D., Lasch, S., Siderowf, A., Tanner, C., Simuni, T., Coffey, C., and Taylor, P., The Parkinson Progression Marker Initiative (PPMI). Prog. Neurobiol. 95(4):629–635, 2011.
Article
Google Scholar
Liu, C., Wang, J., Chen, Y. Y., Deng, B., Wei, X. L., and Li, H. Y., Closed-loop control of the thalamocortical relay neuron’s Parkinsonian state based on slow variable. Int. J. Neural Syst. 23(4):1350017, 2013 (13 pages).
Article
PubMed
Google Scholar
Luo, C., Zhang, Y., Cao, W., Huang, Y., Yang, F., Wang, J., Tu, S., Wang, X., and Yao, D., Altered Structural and functional feature of striatocortical circuit in benign epilepsy with cectrotemporal spikes. Int. J. Neural Syst. 25(6):1550027, 2015 (13 pages).
Article
PubMed
Google Scholar
Martinez-Murcia, F. J., Gorriz, J. M., Ramirez, J., Illan, I. A., and The Parkinson’s Progression Markers Initiative, Automated Detection of Parkinsonism Using Significance Measures and Component Analysis in DatSCAN imaging. Neurocomputing 126:58–70, 2014.
Article
Google Scholar
Mian, O. S., Schneider, S. A., Schwingenschuh, P., Bhatia, K. P., and Day, B. L., Gait in SWEDDs patients: comparison with Parkinson’s disease patients and healthy controls. Mov. Disord. 26(7):1266–1273, 2011.
Article
PubMed
Google Scholar
Parazzini, M., Fiocchi, S., Liorni, I., Priori, A., and Ravazzani, P., Computational modelling of transcranial direct current stimulation in the child brain: Implications for the treatment of refractory childhood focal epilepsy. Int. J. Neural Syst. 24(2):1430006, 2014 (10 pages).
Article
PubMed
Google Scholar
Prashanth, R., Roy, S. D., Mandal, P. K., and Ghosh, S., Automatic classification and prediction models for early Parkinson’s disease diagnosis from SPECT imaging. Expert Syst. Appl. 41:3333–3342, 2014.
Article
Google Scholar
Salvatore, C., Cerasa, A., Augimeri, A., Quattrone, A., Castiglioni, I., Gallivanone, F., Gilardi, M. C., and Morelli, M., Machine learning on brain MRI data for differential diagnosis of Parkinson’s disease and progressive supranuclear palsy. J. Neurosci. Methods 222:230–237, 2014.
CAS
Article
PubMed
Google Scholar
Sankari, Z., and Adeli, H., Probabilistic neural networks for diagnosis of Alzheimer’s disease using conventional and wavelet coherence. J. Neurosci. Methods 197(1):165–170, 2011.
Article
PubMed
Google Scholar
Sankari, Z., Adeli, H., and Adeli, A., Intrahemispheric, interhemispheric and distal EEG coherence in Alzheimer’s disease. Clin. Neurophysiol. 122(5):897–906, 2011.
Article
PubMed
Google Scholar
Sankari, Z., Adeli, H., and Adeli, A., Wavelet coherence model for diagnosis of Alzheimer’s disease. Clin. EEG Neurosc. 43(3):268–278, 2012.
Article
Google Scholar
Schneider, S. A., Edwards, M. J., Mir, P., Cordivari, C., Hooker, J., Dickson, J., Quinn, N., and Bhatia, K. P., Patients with adult-onset dystonic tremor resembling parkinsonian tremor have scans without evidence of dopaminergic deficit (SWEDDs). Mov. Disord. 22(15):2210–2215, 2007.
Article
PubMed
Google Scholar
Schwingenschuh, P., Ruge, D., Edwards, M. J., Terranova, C., Katschnig, P., Carrillo, F., Silveira-Moriyama, L., and Bhatia, K. P., Distinguishing SWEDDs patients with asymmetric resting tremor from Parkinson’s disease: a clinical and electrophysiological study. Mov. Disord. 25(5):560–569, 2010.
PubMed Central
Article
PubMed
Google Scholar
Siddique, N., and Adeli, H., Computational intelligence - synergies of fuzzy logic, neural networks and evolutionary computing. Wiley, West Sussex, 2013.
Book
Google Scholar
Silveira-Moriyama, L., Schwingenschuh, P., O’Donnell, A., Schneider, S. A., Mir, P., Carrillo, F., Terranova, C., Petrie, A., Grosset, D. G., Quinn, N. P., Bhatia, K. P., and Lees, A. J., Olfaction in patients with suspected Parkinsonism and scans without evidence of dopaminergic deficit (SWEDDs). J. Neurol. Neurosurg. Psychiatry 80(7):744–748, 2009.
CAS
Article
PubMed
Google Scholar
Specht, D. F., Probabilistic neural networks. Neural Netw. 3:109–118, 1990.
Article
Google Scholar
Su, F., Wang, J., Deng, B., Wei, X. L., Chen, Y. Y., and Li, H. Y., Adaptive control of Parkinson’s state based on a nonlinear computational model with unknown parameters. Int. J. Neural Syst. 25(1):1450030, 2015 (13 pages).
Article
PubMed
Google Scholar
Story, B. A., and Fry, G. T., A structural impairment detection system using competitive arrays of artificial neural networks. Comput. Aided Civ. Infrastruct. Eng. 29(3):180–190, 2014.
Article
Google Scholar
Su, F., Wang, J., Deng, B., Wei, X. L., Chen, Y. Y., and Li, H. Y., Adaptive control of Parkinson’s state based on a nonlinear computational model with unknown parameters. Int. J. Neural Syst. 25(1):1450030, 2015 (13 pages).
Article
PubMed
Google Scholar
Tolosa, E., Wenning, G., and Poewe, W., The diagnosis of Parkinson’s disease. Lancet Neurol. 5(1):75–86, 2006.
Article
PubMed
Google Scholar
Visser, M., Marinus, J., Stiggelbout, A. M., and Van Hilten, J. J., Assessment of autonomic dysfunction in Parkinson’s disease: The SCOPA-AUT. Mov. Disord. 19(11):1306–1312, 2004.
Article
PubMed
Google Scholar
Yang, H. J., Kim, Y. E., Yun, J. Y., Ehm, G., Kim, H. J., and Jeon, B. S., Comparison of sleep and other non-motor symptoms between SWEDDs patients and de novo Parkinson’s disease patients. Parkinsonism Relat. Disord. 20(12):1419–1422, 2014.
Article
PubMed
Google Scholar
Yuan, Q., Zhou, W., Yuan, S., Li, X., Wang, J., and Jia, G., Epileptic EEG classification based on kernel sparse representation. Int. J. Neural Syst. 24(4):1450015, 2014 (13 pages).
Article
PubMed
Google Scholar
Zhang, C., Wang, H., Wang, H., and Wu, M., EEG-based expert system using complexity measures and probability density function control in alpha sub-band. Integr. Comput. Aided Eng. 20(4):391–405, 2013.
CAS
Google Scholar
Zhang, Y., and Zhou, W., Multifractal analysis and relevance vector machine-based automatic seizure detection in intracranial. Int. J. Neural Syst. 25(6):1550020, 2015 (14 pages).
Article
PubMed
Google Scholar
Zhou, L. R., Ou, J. P., and Yan, G. R., Response surface method based on radial basis functions for modeling large-scale structures in model updating. Comput. Aided Civ. Infrastruct. Eng. 28(3):210–226, 2013.
Article
Google Scholar