A Fatigue Measuring Protocol for Wireless Body Area Sensor Networks

Abstract

As players and soldiers preform strenuous exercises and do difficult and tiring duties, they are usually the common victims of muscular fatigue. Keeping this in mind, we propose FAtigue MEasurement (FAME) protocol for soccer players and soldiers using in-vivo sensors for Wireless Body Area Sensor Networks (WBASNs). In FAME, we introduce a composite parameter for fatigue measurement by setting a threshold level for each sensor. Whenever, any sensed data exceeds its threshold level, the players or soldiers are declared to be in a state of fatigue. Moreover, we use a vibration pad for the relaxation of fatigued muscles, and then utilize the vibrational energy by means of vibration detection circuit to recharge the in-vivo sensors. The induction circuit achieves about 68 % link efficiency. Simulation results show better performance of the proposed FAME protocol, in the chosen scenarios, as compared to an existing Wireless Soccer Team Monitoring (WSTM) protocol in terms of the selected metrics.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

References

  1. 1.

    www.en.wikipedia.org/wiki/Body_area_network (last accessed on 21st January, 2014)

  2. 2.

    Garcia, M, Catala, A, Lloret, J, Rodrigues, J J: A wireless sensor network for soccer team monitoring. In: Distributed Computing in Sensor Systems and Workshops (DCOSS), 2011 International Conference on, pp. 1–6, IEEE (2011)

  3. 3.

    OSullivan, T, Munro, E A, Parashurama, N, Conca, C, Gambhir, S S, Harris, J S, Levi, O, Implantable semiconductor biosensor for continuous in vivo sensing of far-red fluorescent molecules. Opt. Express 18 (12):12513–12525, 2010.

    Article  CAS  Google Scholar 

  4. 4.

    Akram, S, Javaid, N, Tauqir, A, Rao, A, Mohammad, S: The-fame: Threshold based energy-efficient fatigue measurement for wireless body area sensor networks using multiple sinks. In: Broadband and Wireless Computing, Communication and Applications (BWCCA), 2013 Eighth International Conference on, pp. 214–220, IEEE (2013)

  5. 5.

    Zhang, M, and Sawchuk, A, Human daily activity recognition with sparse representation using wearable sensors. IEEE Trans. Inf. Technol. Biomed. 17(3):553–560, 2013.

    Google Scholar 

  6. 6.

    Kifayat, K, Fergus, P, Cooper, S, Merabti, M: Body area networks for movement analysis in physiotherapy treatments. In: Advanced Information Networking and Applications Workshops (WAINA), 2010 IEEE 24th International Conference on, pp. 866–872, IEEE (2010)

  7. 7.

    Rashidi, P, and Mihailidis, A, A survey on ambient assisted living tools for older adults. IEEE Trans. Inf. Technol. Biomed. 17(3):579–590, 2013.

    Google Scholar 

  8. 8.

    Javaid, N, Abbas, Z, Farid, M S, Khan, Z A, Alrajeh, N: M-attempt: A new energy-efficient routing protocol in wireless body area sensor networks. In: 4th International Conference on Ambient Systems, Networks and Technologies (ANT 2013) (2013)

  9. 9.

    He, D, Chen, C, Chan, S, Bu, J, Zhang, P, ”Secure and lightweight network admission and transmission protocol for body sensor networks. IEEE Trans. Inf. Technol. Biomed. 17(3):664–674, 2011.

    Google Scholar 

  10. 10.

    Lo, G, Gonzalez, S, Leung, V, Wireless body area network node localization using small-scale spatial information. IEEE Trans. Inf. Technol. Biomed. 17(3):715–726, 2012.

    Google Scholar 

  11. 11.

    Dhamdhere, A, Chen, H, Kurusingal, A, Sivaraman, V, Burdett, A: Experiments with wireless sensor networks for real-time athlete monitoring. In: Local Computer Networks (LCN), 2010 IEEE 35th Conference on, pp. 938–945, IEEE (2010)

  12. 12.

    De Nardis, L, Domenicali, D, Di Benedetto, M: Mobility model for body area networks of soccer players. In: in Wireless Technology Conference (EuWIT), 2010 European, pp. 65–68, IEEE (2010)

  13. 13.

    Kuroda, T, Sasaki, H, Suenaga, T, Masuda, Y, Yasumuro, Y, Hori, K, Ohboshi, N, Takemura, T, Chihara, K, Yoshihara, H, Embedded ubiquitous services on hospital information systems. IEEE Trans. Inf. Technol. Biomed. 17 (3):1216–1223, 2012.

    Article  Google Scholar 

  14. 14.

    Chen, S-K, Kao, T, Chan, C-T, Huang, C-N, Chiang, C-Y, Lai, C-Y, Tung, T-H, Wang, P-C, A reliable transmission protocol for zigbee-based wireless patient monitoring. IEEE Trans. Inf. Technol. Biomed. 16 (1):6–16, 2012.

    Article  PubMed  Google Scholar 

  15. 15.

    Rahim, A, Javaid, N, Aslam, M, Qasim, U, Khan, Z: Adaptive-reliable medium access control protocol for wireless body area networks. In: Sensor, Mesh and Ad Hoc Communications and Networks (SECON), 2012 9th Annual IEEE Communications Society Conference on, pp. 56–58, IEEE (2012)

  16. 16.

    Javaid, N, Hayat, S, Shakir, M, Khan, M, Bouk, S, Khan, Z, Energy efficient mac protocols in wireless body area sensor networks-a survey. J. Basic Appl. Sci. Res. 2013 3(4):770–781, 2013.

    Google Scholar 

  17. 17.

    Zulkifli, N, Harun, F C, Azahar, N: Xbee wireless sensor networks for heart rate monitoring in sport training. In: Biomedical Engineering (ICoBE), 2012 International Conference on, pp. 441–444, IEEE (2012)

  18. 18.

    Lerer, S J, Tieniber, E B, Smith, J M, Building a wireless ice hockey personnel management system. Philadelphia, PA: Senior Design Project, 2010.

    Google Scholar 

  19. 19.

    Hmida, G B, Ghariani, H, Samet, M, Design of wireless power and data transmission circuits for implantable biomicrosystem. Biotechnology 6(2):153–164, 2007.

    Article  Google Scholar 

  20. 20.

    Chaoui, M, Ghariani, H, Lahiani, M, Perdriau, R, Ramdani, M, Sellami, F: Electrical modeling of inductive links for high-efficiency energy transmission. In: Electronics, Circuits and Systems, 2005. ICECS 2005. 12th IEEE International Conference on, pp. 1–4, IEEE (2005)

  21. 21.

    Ali, H, Ahmad, T J, Khan, S A: Inductive link design for medical implants. In: Industrial Electronics & Applications, 2009. ISIEA 2009. IEEE Symposium on, vol. 2, pp. 694–699, IEEE (2009)

  22. 22.

    www.soccerperformance.org (last accessed on March 31, 2015)

  23. 23.

    www.scienceofsocceronline.com (last accessed on March 31, 2015)

  24. 24.

    www.sportsscientists.com (last accessed on March 31, 2015)

  25. 25.

    www.scientificamerican.com (last accessed on March 31, 2015)

  26. 26.

    www.nlm.nih.gov (last accessed on March 31, 2015)

  27. 27.

    http://en.wikipedia.org/wiki/running (last accessed on March 31, 2015)

  28. 28.

    Scalise, L, Non contact heart monitoring: INTECH Open Access Publisher, 2012.

Download references

Acknowledgments

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for funding this research through Research Group Project NO.(RG#1435-051).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nadeem Javaid.

Additional information

This article is part of the Topical Collection on Systems-Level Quality Improvement

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Akram, S., Javaid, N., Ahmad, A. et al. A Fatigue Measuring Protocol for Wireless Body Area Sensor Networks. J Med Syst 39, 193 (2015). https://doi.org/10.1007/s10916-015-0338-8

Download citation

Keywords

  • Wireless body area sensor networks
  • Multiple sinks
  • Fatigue measurement
  • Routing
  • Link efficiency
  • Voltage gain
  • Vibration detection and vibration energy