A Novel Microwave Sensor to Detect Specific Biomarkers in Human Cerebrospinal Fluid and Their Relationship to Cellular Ischemia During Thoracoabdominal Aortic Aneurysm Repair

  • M. Fok
  • M. Bashir
  • H. Fraser
  • N. Strouther
  • A. Mason
Non-invasive Diagnostic Systems
Part of the following topical collections:
  1. Patient Facing Systems


Thoraco-abdominal aneurysms (TAAA) represents a particularly lethal vascular disease that without surgical repair carries a dismal prognosis. However, there is an inherent risk from surgical repair of spinal cord ischaemia that can result in paraplegia. One method of reducing this risk is cerebrospinal fluid (CSF) drainage. We believe that the CSF contains clinically significant biomarkers that can indicate impending spinal cord ischaemia. This work therefore presents a novel measurement method for proteins, namely albumin, as a precursor to further work in this area. The work uses an interdigitated electrode (IDE) sensor and shows that it is capable of detecting various concentrations of albumin (from 0 to 100 g/L) with a high degree of repeatability at 200 MHz (R2 = 0.991) and 4 GHz (R2 = 0.975).


Thoraco-abdominal aneurysms Electromagnetic wave sensors Interdigitatedelectrode In-situ monitoring 


  1. 1.
    Frederick, J., and Woo, Y., Thoracoabdominal aortic aneurysm. Ann. Cardiothorac. Surg. 1(3):277–285, 2012. doi: 10.3978/j.issn. 2225-319X.2012.09.01.Google Scholar
  2. 2.
    Bashir, M., Fok, M., Hammoud, I., Rimmer, L., Shaw, M., Field, M., et al., A perspective on natural history and survival in nonoperated thoracic aortic aneurysm patients. Aorta. 1(3):182–189, 2013. doi: 10.12945/j.aorta.2013.13-043.CrossRefGoogle Scholar
  3. 3.
    Perko, M. J., Nørgaard, M., Herzog, T. M., Olsen, P. S., Schroeder, T. V., and Pettersson, G., Unoperated aortic aneurysm: a survey of 170 patients. Ann. Thorac. Surg. 59:1204–1209, 1995. doi: 10.1016/0003-4975(95)00132-5.CrossRefGoogle Scholar
  4. 4.
    Achneck, H. E., Rizzo, J. A., Tranquilli, M., and Elefteriades, J. A., Safety of thoracic aortic surgery in the present era. Ann. Thorac. Surg. 84(4):1180–1185, 2007.CrossRefGoogle Scholar
  5. 5.
    Coselli, J. S., Lemaire, S. A., Koksoy, C., Schmittling, Z. C., and Curling, P. E., Cerebrospinal fluid drainage reduces paraplegia after thoracoabdominal aortic aneurysm repair: results of a randomized clinical trial. Vasc. Surg. 35:631–639, 2002.CrossRefGoogle Scholar
  6. 6.
    McGarvey, M. L., Cheung, A. T., Szeto, W., and Messe, S. R., Management of neurologic complications of thoracic aortic surgery. J. Clin. Neurophysiol. 24:336–343, 2007.Google Scholar
  7. 7.
    Gelman, S., The pathophysiology of aortic cross-clamping and unclamping. Anesthesiology 82:1026–1057, 1995.CrossRefGoogle Scholar
  8. 8.
    Lintott, P., Hafez, H. M., and Stansby, G. P., Spinal cord complications of thoracoabdominal aneurysm surgery. Br. J. Surg. 85:5–15, 1998.CrossRefGoogle Scholar
  9. 9.
    Coselli, J. S., Bozinovski, J., and LeMaire, S. A., Open surgical repair of 2286 thoracoabdominal aortic aneurysms. Ann. Thorac. Surg. 83:S862–S864, 2007.CrossRefGoogle Scholar
  10. 10.
    Frederick, J. R., and Woo, Y. J., Thoracoabdominal aortic aneurysm. Ann. Cardiothorac. Surg. 1(3):277–285, 2012. doi: 10.3978/j.issn. 2225-319X.2012.09.01.Google Scholar
  11. 11.
    Augoustides, J. G., Floyd, T. F., McGarvey, M. L., et al., Major clinical outcomes in adults undergoing thoracic aortic surgery requiring deep hypothermic circulatory arrest: quantification of organ-based perioperative outcome and detection of opportunities for perioperative intervention. J. Cardiothorac. Vasc. Anesth. 19:446–452, 2005. doi: 10.1053/j.jvca.2005.05.004.CrossRefGoogle Scholar
  12. 12.
    Ziganshin, B. A., and Elefteriades, J. A., Deep hypothermic circulatory arrest. Ann. Cardiothorac. Surg. 2(3):303–315, 2013.Google Scholar
  13. 13.
    Lancaster, R. T., Conrad, M. F., Patel, V. I., et al., Further experience with distal aortic perfusion and motor-evoked potential monitoring in the management of extent I-III thoracoabdominal aortic anuerysms. J. Vasc. Surg. 58:283–290, 2013.CrossRefGoogle Scholar
  14. 14.
    Estrera, A. L., Sheinbaum, R., Miller, C. C., 3rd, et al., Neuromonitor-guided repair of thoracoabdominal aortic aneurysms. J. Thorac. Cardiovasc. Surg. 140:S131–S135, 2010.CrossRefGoogle Scholar
  15. 15.
    Kawanishi, Y., Munakata, H., Matsumori, M., et al., Usefulness of transcranial motor evoked potentials during thoracoabdominal aortic surgery. Ann. Thorac. Surg. 83:456–461, 2007.CrossRefGoogle Scholar
  16. 16.
    Safi, H. J., Miller Iii, C. C., Carr, C., et al., Importance of intercostal artery reattachment during thoracoabdominal aortic aneurysm repair. J. Vasc. Surg. 27(1):58–68, 1998. doi: 10.1016/S0741-5214(98)70292-7.CrossRefGoogle Scholar
  17. 17.
    Khan, S. N., and Stansby, G., Cerebrospinal fluid drainage for thoracic and thoracoabdominal aortic aneurysm surgery. Cochrane Database Syst. Rev., 2004.Google Scholar
  18. 18.
    Cina, C. S., Abouzahr, L., Arena, G. O., et al., Cerebrospinal fluid drainage to prevent paraplegia during thoracic and thoracoabdominal aortic aneurysm surgery: a systematic review and meta-analysis. J. Vasc. Surg. 40:36–44, 2004.CrossRefGoogle Scholar
  19. 19.
    Goh, J. H., Mason, A., Al-Shamma’a, A. I., et al., Lactate detection using microwave spectroscopy for in-situ medical applications. Int. J. Smart Sens. Intell. Syst. 4:338–352, 2011.Google Scholar
  20. 20.
    Goh, J. H, Mason, A., Al-Shamma’a A. I., et al., Lactate detection using a microwave cavity sensor for biomedical applications. Proc. 46th Annual Microwave Power Symposium (IMPI 46).32–39. Las Vegas, USA, 2012.Google Scholar
  21. 21.
    Korostynska, O., Blakey, R., Mason, A., et al., Novel method for vegetable oil type verification based on real-time microwave sensing. Sensors Actuators A Phys. 202:211–216, 2013. doi: 10.1016/j.sna.2012.12.011.CrossRefGoogle Scholar
  22. 22.
    Blakey, R., Korostynska, O., Mason, A., et al., Real-time microwave based sensing method for vegetable oil type verification. Procedia Eng. 47:623–626, 2012.CrossRefGoogle Scholar
  23. 23.
    Mason, A., Korostynska, O., Ortoneda-Pedrola, M., et al., A resonant co-planar sensor at microwave frequencies for biomedical applications. Sensors Actuators A Phys. 202:170–175, 2013. doi: 10.1016/j.sna.2013.04.015.CrossRefGoogle Scholar
  24. 24.
    Drenger, B., Parker, S. D., Frank, S. M., et al., Changes in cerebrospinal fluid pressure and lactate concentrations during thoracoabdominal aortic aneurysm surgery. Anesthesiology 86(1):41–47, 1997.CrossRefGoogle Scholar
  25. 25.
    Rothermundt, M., Peters, M., Prehn, J. H., et al., S100B in brain damage and neurodegeneration. Microsc. Res. Tech. 60(6):614–632, 2003.CrossRefGoogle Scholar
  26. 26.
    Marquardt, G., Setzer, M., Theisen, A., et al., Experimental subacute spinal cord compression: correlation of serial S100B and NSE serum measurements, histopathological changes, and outcome. Neurol. Res. 33(4):421–426, 2011.CrossRefGoogle Scholar
  27. 27.
    Marquardt, G., Setzer, M., Szelenyi, A., et al., Prognostic relevance of serial S100b and NSE serum measurements in patients with spinal intradural lesions. Neurol. Res. 31(3):265–269, 2009.CrossRefGoogle Scholar
  28. 28.
    Khaladj, N., Teebken, O. E., Hagl, C., et al., The role of cerebrospinal fluid S100 and lactate to predict clinically evident spinal cord ischaemia in thoraco-abdominal aortic surgery. Eur. J. Vasc. Endovasc. Surg. 36(1):11–19, 2008.CrossRefGoogle Scholar
  29. 29.
    Anderson, R. E., Winnerkvist, A., Hansson, L. O., et al., Biochemical markers of cerebrospinal ischemia after repair of aneurysms of the descending and thoracoabdominal aorta. J. Cardiothorac. Vasc. Anesth. 17(5):598–603, 2003.CrossRefGoogle Scholar
  30. 30.
    Winnerkvist, A., Anderson, R. E., Hansson, L. O., et al., Multilevel somatosensory evoked potentials and cerebrospinal proteins: indicators of spinal cord injury in thoracoabdominal aortic aneurysm surgery. Eur. J. Cardiothorac. Surg. 31(4):637–642, 2007.CrossRefGoogle Scholar
  31. 31.
    Casiraghi, G., Poli, D., Landoni, G., et al., Intrathecal lactate concentration and spinal cord injury in thoracoabdominal aortic surgery. J. Cardiothorac. Vasc. Anesth. 25(1):120–126, 2011.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • M. Fok
    • 1
    • 2
  • M. Bashir
    • 1
  • H. Fraser
    • 1
  • N. Strouther
    • 1
  • A. Mason
    • 1
  1. 1.Thoracic Aortic Aneurysm ServiceLiverpool Heart & Chest HospitalLiverpoolUK
  2. 2.Liverpool John Moores UniversityBuilt Environment and Sustainable Technologies (BEST) Research Institute, RF and Microwave Research GroupLiverpoolUK

Personalised recommendations