Advertisement

Mobile PHRs Compliance with Android and iOS Usability Guidelines

  • Belén Cruz Zapata
  • Antonio Hernández Niñirola
  • Ali Idri
  • José Luis Fernández-Alemán
  • Ambrosio Toval
Mobile Systems
Part of the following topical collections:
  1. Mobile Systems

Abstract

Mobile Personal Health Records (PHRs) have achieved a particularly strong market share since the appearance of more powerful mobile devices and popular worldwide mobile application markets such as Apple’s App Store and Android’s Google Play. However, Android and Apple have a set of recommendations on design and usability targeted towards developers who wish to publish apps in their stores: Android Design Guidelines and iOS Human Interface Guidelines. This paper aims to evaluate compliance with these guidelines by assessing the usability recommendations of a set of 24 selected mobile PHR applications. An analysis process based on a well-known Systematic Literature Review (SLR) protocol was used. The results show that the 24 mobile PHR applications studied are not suitably structured. 46 % of these applications do not use any of the recommended patterns, using instead lists or springboards, which are deprecated patterns for top-level menus. 70 % of the PHRs require a registration to be able to test the application when these interactions should be delayed. Our study will help both PHR users to select user-friendly mobile PHRs and PHR providers and developers to identify the good usability practices implemented by the applications with the highest scores.

Keywords

mHealth iOS Android Usability PHR 

Notes

Acknowledgments

This research is part of the PEGASO-PANGEA projects (TIN2009-13718-C02-02) financed by the Spanish Ministry of Science and Innovation (Spain), and the GEODAS-REQ project (TIN2012-37493-C03-02) financed by both the Spanish Ministry of Economy and Competitiveness and European FEDER funds.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2012–2017. http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.html. Accessed 17 Oct 2013
  2. 2.
    Deng, Z., Mo, X., and Liu, S., Comparison of the middle-aged and older users’ adoption of mobile health services in China. Int J Med Inf 83:210–224, 2014.CrossRefGoogle Scholar
  3. 3.
    Iwaya, L. H., Gomes, M. A. L., Simplício, M. A., et al., Mobile health in emerging countries: A survey of research initiatives in Brazil. Int J Med Inf 82:283–298, 2013.CrossRefGoogle Scholar
  4. 4.
    Jahns R-G, Houck P (2013) Mobile Health Market Report 2013–2017. http://www.research2guidance.com/shop/index.php/mobile-health-trends-and-figures 2013–2017. Accessed 23 Nov 2013
  5. 5.
    Kharrazi, H., Chisholm, R., VanNasdale, D., and Thompson, B., Mobile personal health records: An evaluation of features and functionality. Int J Med Inf 81:579–593, 2012.CrossRefGoogle Scholar
  6. 6.
    Huba, N., and Zhang, Y., Designing patient-centered personal health records (PHRs): health care professionals’ perspective on patient-generated data. J Med Syst 36:3893–3905, 2012.PubMedCrossRefGoogle Scholar
  7. 7.
    Jones, D. A., Shipman, J. P., Plaut, D. A., and Selden, C. R., Characteristics of personal health records: findings of the Medical Library Association/National Library of Medicine Joint Electronic Personal Health Record Task Force. J Med Libr Assoc 98:243–249, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Carrión, I., Alemán, J. F., and Toval, A., Personal Health Records: New Means to Safely Handle our Health Data? IEEE Comput 45:27–33, 2012.CrossRefGoogle Scholar
  9. 9.
    Aungst T (2013) Apple app store still leads Android in total number of medical apps. In: iMedicalApps. http://www.imedicalapps.com/2013/07/apple-android-medical-app/. Accessed 17 Oct 2013
  10. 10.
    World Health Organization (2011) mHealth: New horizons for health through mobile technologies.Google Scholar
  11. 11.
    Fernández-Alemán, J. L., Seva-Llor, C. L., Toval, A., et al., Free Web-based Personal Health Records: An Analysis of Functionality. J Med Syst 37:1–16, 2013.CrossRefGoogle Scholar
  12. 12.
    Tang, P. C., Ash, J. S., Bates, D. W., et al., Personal Health Records: Definitions, Benefits, and Strategies for Overcoming Barriers to Adoption. J Am Med Inform Assoc 13:121–126, 2006.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Liu, L. S., Shih, P. C., and Hayes, G. R., Barriers to the Adoption and Use of Personal Health Record Systems. Proc. 2011 IConference. ACM, New York, 2011.Google Scholar
  14. 14.
    Carrión Señor, I., Fernández-Alemán, J. L., and Toval, A., Are Personal Health Records Safe? A Review of Free Web-Accessible Personal Health Record Privacy Policies. J Med Internet Res 14:e114, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Brown, W., 3rd, Yen, P.-Y., Rojas, M., and Schnall, R., Assessment of the Health IT Usability Evaluation Model (Health-ITUEM) for evaluating mobile health (mHealth) technology. J Biomed Inform 46:1080–1087, 2013.PubMedCrossRefGoogle Scholar
  16. 16.
    Kaelber, D. C., Jha, A. K., Johnston, D., et al., A Research Agenda for Personal Health Records (PHRs). J Am Med Inform Assoc 15:729–736, 2008.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Archer, N., Fevrier-Thomas, U., Lokker, C., et al., Personal health records: a scoping review. J Am Med Inform Assoc 18:515–522, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    ISO (2010) ISO 9241–210, International Standard: Ergonomics of Human–System Interaction – Part 210: Human-Centred Design for Interactive Systems.Google Scholar
  19. 19.
    Hassenzahl, M., User Experience (UX): Towards an Experiential Perspective on Product Quality. Proc. 20th. In: Conf. Assoc. Francoph. Interact. Homme-Mach. ACM, New York, pp. 11–15, 2008.Google Scholar
  20. 20.
    Seffah, A., Donyaee, M., Kline, R. B., and Padda, H. K., Usability measurement and metrics: A consolidated model. Softw Qual J 14:159–178, 2006.CrossRefGoogle Scholar
  21. 21.
    Abran A, Khelifi A, Suryn W, Seffah A (2003) Consolidating the ISO Usability Models. Proc. 11th Int. Softw. Qual. Manag. Conf. 8th Annu. INSPIRE Conf.Google Scholar
  22. 22.
    Viitanen, J., Hyppönen, H., Lääveri, T., et al., National questionnaire study on clinical ICT systems proofs: physicians suffer from poor usability. Int J Med Inf 80:708–725, 2011.CrossRefGoogle Scholar
  23. 23.
    Whitlock, L. A., and McLaughlin, A. C., Identifying Usability Problems of Blood Glucose Tracking Apps for Older Adult Users. Proc Hum Factors Ergon Soc Annu Meet 56:115–119, 2012.CrossRefGoogle Scholar
  24. 24.
    Brereton, P., Kitchenham, B. A., Budgen, D., et al., Lessons from applying the systematic literature review process within the software engineering domain. J Syst Softw 80:571–583, 2007.CrossRefGoogle Scholar
  25. 25.
    Android Developers Reference Android Design Guidelines. http://developer.android.com/design/index.html. Accessed 21 Oct 2013
  26. 26.
    iOS Developer Library iOS Human Interface Guidelines. https://developer.apple.com/library/ios/documentation/userexperience/conceptual/mobilehig/. Accessed 21 Oct 2013
  27. 27.
    (2005) ISO/TR 20514, Health Informatics – Electronic Health Record – Definition, Scope, and Context.Google Scholar
  28. 28.
    Johnson, F., Personal health record. Med J Aust 148:544, 1988.PubMedGoogle Scholar
  29. 29.
    Daglish D, Archer N (2009) Electronic Personal Health Record Systems: A Brief Review of Privacy, Security, and Architectural Issues. Proc. World Congr. Priv. Secur. Trust Manag. E-Bus. 2009 Congr. 09. pp 110–120Google Scholar
  30. 30.
    Kaelber, D., and Pan, E. C., The Value of Personal Health Record (PHR) Systems. AMIA Annu Symp Proc 2008:343–347, 2008.PubMedCentralGoogle Scholar
  31. 31.
    Luo, G., Tang, C., and Thomas, S. B., Intelligent personal health record: experience and open issues. J Med Syst 36:2111–2128, 2012.PubMedCrossRefGoogle Scholar
  32. 32.
    Luo, G., Triggers and monitoring in intelligent personal health record. J Med Syst 36:2993–3009, 2012.PubMedCrossRefGoogle Scholar
  33. 33.
    Luo, G., Open issues in intelligent personal health record - an updated status report for 2012. J Med Syst 37:9943, 2013.PubMedCrossRefGoogle Scholar
  34. 34.
    Lafky DB, Horan TA (2008) Prospective Personal Health Record Use Among Different User Groups: Results of a Multi-wave Study. Proc. 41st Annu. Hawaii Int. Conf. Syst. Sci. pp 233–233Google Scholar
  35. 35.
    Maloney, F. L., and Wright, A., USB-based Personal Health Records: an analysis of features and functionality. Int J Med Inf 79:97–111, 2010.CrossRefGoogle Scholar
  36. 36.
    Venta L, Isomursu M, Ahtinen A, Ramiah S (2008) “My Phone is a Part of My Soul” - How People Bond with Their Mobile Phones. Proc. Second Int. Conf. Mob. Ubiquitous Comput. Syst. Serv. Technol. 2008 UBICOMM 08. pp 311–317Google Scholar
  37. 37.
    Fogg, BJ (2007) The future of persuasion is mobile. In: Fogg, BJ, Eckles, D (eds) Mob. Persuas. 20 Perspect. Future Behav. Change. Stanford Captology Media, Stanford, CA, pp 5–11Google Scholar
  38. 38.
    Fisch M (2012) Mobile-friendly sites turn visitors into customers. In: Google Mob. Ads. http://googlemobileads.blogspot.ca/2012/09/mobile-friendly-sites-turn-visitors.html. Accessed 16 Feb 2014
  39. 39.
    W3C (2010) Mobile Web Application Best Practices. http://www.w3.org/TR/mwabp/. Accessed 22 Feb 2014
  40. 40.
    Nilsson, E. G., Design patterns for user interface for mobile applications. Adv Eng Softw 40:1318–1328, 2009.CrossRefGoogle Scholar
  41. 41.
    Compuware (2013) Mobile Apps: What Consumers Really Need and Want. A Global Study of Consumers’ Expectations and Experiences of Mobile Applications. http://offers2.compuware.com/rs/compuware/images/Mobile_App_Survey_Report.pdf. Accessed 22 Feb 2014
  42. 42.
    IDC (2013) Android and iOS Combine for 91.1 % of the Worldwide Smartphone OS Market in 4Q12 and 87.6 % for the Year, According to IDC. http://www.idc.com/getdoc.jsp?containerId=prUS23946013. Accessed 15 Jan 2014
  43. 43.
    Moher, D., Liberati, A., Tetzlaff, J., and Altman, D. G., Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Ann Intern Med 151:264–269, 2009.PubMedCrossRefGoogle Scholar
  44. 44.
    Fernandez, A., Insfran, E., and Abrahão, S., Usability evaluation methods for the web: A systematic mapping study. Inf Softw Technol 53:789–817, 2011.CrossRefGoogle Scholar
  45. 45.
    Walji, M. F., Kalenderian, E., Piotrowski, M., et al., Are three methods better than one? A comparative assessment of usability evaluation methods in an EHR. Int J Med Inf 83:361–367, 2014.CrossRefGoogle Scholar
  46. 46.
    Zaid, B., Wafaa, B., and Jamaludin, R., A Comparative Study of Usability Methods for Mobile Applications. Int J Sci Eng Res 3:184–187, 2012.Google Scholar
  47. 47.
    Arnhold, M., Quade, M., and Kirch, W., Mobile Applications for Diabetics: A Systematic Review and Expert-Based Usability Evaluation Considering the Special Requirements of Diabetes Patients Age 50 Years or Older. J Med Internet Res 16:e104, 2014.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Jaspers, M. W. M., A comparison of usability methods for testing interactive health technologies: Methodological aspects and empirical evidence. Int J Med Inf 78:340–353, 2009.CrossRefGoogle Scholar
  49. 49.
    Stone, P., Popping the (PICO) question in research and evidence-based practice. Appl Nurs Res 15:197–8, 2002.PubMedCrossRefGoogle Scholar
  50. 50.
    D’ Heureuse, N., Huici, F., Arumaithurai, M., et al., What’s App?: A Wide-scale Measurement Study of Smart Phone Markets. SIGMOBILE Mob Comput Commun Rev 16:16–27, 2012.CrossRefGoogle Scholar
  51. 51.
    Petsas T, Papadogiannakis A, Polychronakis M, et al. (2013) Rise of the Planet of the Apps: A Systematic Study of the Mobile App Ecosystem. Proc. 2013 Conf. Internet Meas. Conf. ACM, New York, NY, USA, pp 277–290Google Scholar
  52. 52.
    Harris Interactive, pontiflex (2010) How Consumers Interact with Mobile App Advertising. http://pontiflex.wpengine.netdna-cdn.com/wp-content/uploads/2012/04/HowConsumersInteractwithMobileAppAds.pdf. Accessed 27 Apr 2014
  53. 53.
    Khan AJ, Subbaraju V, Misra A, Seshan S (2012) Mitigating the True Cost of Advertisement-supported “Free” Mobile Applications. Proc. Twelfth Workshop Mob. Comput. Syst. Appl. ACM, New York, NY, USA, pp 1:1–1:6Google Scholar
  54. 54.
    Orange Business Services (2010) Mobile enterprise applications transforming business. http://business.mobistar.be/resources/pdf/WP_Orange_MEA.pdf. Accessed 27 Apr 2014
  55. 55.
    Zeldman, J., and Marcotte, E., Designing with Web Standards. Riders, New, 2009.Google Scholar
  56. 56.
  57. 57.
    Jackob Nielsen (2012) How Many Test Users in a Usability Study? http://www.nngroup.com/articles/how-many-test-users/. Accessed 29 Mar 2014
  58. 58.
    Landis, J. R., and Koch, G. G., The measurement of observer agreement for categorical data. Biometrics 33:159–174, 1977.PubMedCrossRefGoogle Scholar
  59. 59.
    Dougherty J, Kohavi R, Sahami M (1995) Supervised and Unsupervised Discretization of Continuous Features. Proc. Twelfth Int. Conf. Mach. Learn. Morgan Kaufmann, pp 194–202Google Scholar
  60. 60.
    Nebeling M, Zimmerli C, Norrie M (2013) Informing the design of new mobile development methods and tools. Proc. CHI 13 Ext. Abstr. Hum. Factors Comput. Syst. ACM, New York, NY, USA, pp 283–288Google Scholar
  61. 61.
    Gatsou, C., Politis, A., and Zevgolis, D., The Importance of Mobile Interface Icons on User Interaction. Int J Comput Sci Appl 9:92–107, 2012.Google Scholar
  62. 62.
    Batu Salman Y, Kim Y-H, Cheng H-I (2010) Senior - Friendly icon design for the mobile phone. Proc. 6th Int. Conf. Digit. Content Multimed. Technol. Its Appl. IDC. pp 103–108Google Scholar
  63. 63.
    Zhou, Y., Design Guidelines for an Integrated PHR System: An Approach for UI Designers to Break Down Individual-Level Barriers to PHR Adoption. University, Auburn, 2012.Google Scholar
  64. 64.
    Neil, T., Mobile Design Pattern Gallery: UI Patterns for Mobile Applications. O’Reilly Media, Inc, 2012.Google Scholar
  65. 65.
    Nudelman G (2013) Android Design Patterns: Interaction Design Solutions for Developers. John Wiley & SonsGoogle Scholar
  66. 66.
    Mendoza A (2013) Mobile User Experience: Patterns to Make Sense of it All. NewnesGoogle Scholar
  67. 67.
    Lober, W., Zierler, B., Herbaugh, A., et al., Barriers to the use of a Personal Health Record by an Elderly Population. Proc AMIA Annu Symp 2006:514–518, 2006.Google Scholar
  68. 68.
    Alshaikh, M., Mayet, A., Adam, M., et al., Intervention to reduce the use of unsafe abbreviations in a teaching hospital. Saudi Pharm J 21:277–280, 2013.PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Retscher, G., and Hecht, T., Investigation of location capabilities of four different smartphones for LBS navigation applications. Proc. Int. Conf. Indoor Position. Indoor Navig. IPIN. pp 1–6, 2012.Google Scholar
  70. 70.
    Conrad, F. G., Couper, M. P., Tourangeau, R., and Peytchev, A., The impact of progress indicators on task completion. Interact Comput 22:417–427, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Meyer, J., Bitan, Y., and Shinar, D., Displaying a boundary in graphic and symbolic “wait” displays: Duration estimates and users’ preferences. Int J Hum-Comput Interact 7:273–290, 1995.CrossRefGoogle Scholar
  72. 72.
    Kotz, D., Avancha, S., and Baxi, A., A Privacy Framework for Mobile Health and Home-care Systems. Proc. First ACM Workshop Secur. Priv. Med. Home-Care Syst. ACM, New York, pp. 1–12, 2009.CrossRefGoogle Scholar
  73. 73.
    Health Privacy Project (2007) Best practices for employers offering personal health records (PHRs). https://www.cdt.org/files/pdfs/2007Best_Practices.pdf. Accessed 22 Feb 2014
  74. 74.
    Al-Nayadi F, Abawajy JH (2007) An Authentication Framework for e-Health Systems. 2007 I.E. Int. Symp. Signal Process. Inf. Technol. pp 616–620Google Scholar
  75. 75.
    Rodrigues P, Santos H (2013) Health users’ perception of biometric authentication technologies. Proc. IEEE 26th Int. Symp. Comput.-Based Med. Syst. pp 320–325Google Scholar
  76. 76.
    Win, K. T., Susilo, W., and Mu, Y., Personal Health Record Systems and Their Security Protection. J Med Syst 30:309–315, 2006.PubMedCrossRefGoogle Scholar
  77. 77.
    Zuniga, A. E. F., Win, K. T., and Susilo, W., Biometrics for Electronic Health Records. J Med Syst 34:975–983, 2010.CrossRefGoogle Scholar
  78. 78.
    Patrick, A. S., Usability and Acceptability of Biometric Security Systems. In: Juels, A. (Ed.), Financ. Cryptogr, Springer Berlin Heidelberg, pp. 105–105, 2004.Google Scholar
  79. 79.
    Toval A, Carrillo-de-Gea JM, Carrillo-de-Gea JM, et al. (2011) Learning systems development using reusable standard-based requirements catalogs. 2011 I.E. Glob. Eng. Educ. Conf. EDUCON. pp 907–912Google Scholar
  80. 80.
    Sánchez-Henarejos, A., Fernández-Alemán, J. L., Toval, A., et al., Guía de buenas prácticas de seguridad informática en el tratamiento de datos de salud para el personal sanitario en atención primaria. Aten Primaria 46:214–222, 2014.PubMedCrossRefGoogle Scholar
  81. 81.
    Cos JA, Toval R, Toval A, et al. (2012) Internationalization requirements for e-learning audit purposes. 2012 I.E. Glob. Eng. Educ. Conf. EDUCON. pp 1–6Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Belén Cruz Zapata
    • 1
  • Antonio Hernández Niñirola
    • 1
  • Ali Idri
    • 2
  • José Luis Fernández-Alemán
    • 1
  • Ambrosio Toval
    • 1
  1. 1.Department of Informatics and Systems, Faculty of Computer ScienceCampus de Espinardo – University of MurciaMurciaSpain
  2. 2.Software Project Management Research Team, ENSIASMohammed V Souissi UniversityRabatMorocco

Personalised recommendations