Journal of Medical Systems

, Volume 36, Supplement 1, pp 25–36 | Cite as

Summarizing Phenotype Evolution Patterns from Report Cases

  • María TaboadaEmail author
  • Verónica Álvarez
  • Diego Martínez
  • Belén Pilo
  • Peter N. Robinson
  • María J. Sobrido
Original Paper


The need to represent and manage time is implicit in several reasoning processes in medicine. However, this is predominantly obvious in the field of many neurodegenerative disorders, which are characterized by insidious onsets, progressive courses and variable combinations of clinical manifestations in each patient. Therefore, the availability of tools providing high level descriptions of the evolution of phenotype manifestations from patient data is crucial to promote early disease recognition and optimize the diagnostic process. Although many case reports published in the literature do not provide exhaustive temporal information except only key time references, such as disease onset, diagnosis or monitoring time, automatically comparing cases described by temporal clinical manifestation sequences can provide valuable knowledge about the data evolution. In this paper, we demonstrate the usefulness of representing patient case reports of a neurodegenerative disorder as a set of temporal clinical manifestations semantically annotated with a domain phenotype ontology and registered with a time-stamped value. Novel techniques are presented to query and match sets of different manifestation sequences from multiple patient cases, with the aim of automatically inferring phenotype evolution patterns of generic patients for clinical studies. The method was applied to 25 patient report cases from a Spanish study of the domain of cerebrotendinous xanthomatosis. Five evolution patterns were automatically generated to analyze the patient data. The results were evaluated against 49 relevant conclusions drawn from the study, with a precision of 93 % and a recall of 70 %.


OWL Ontology Temporal constraint network Phenotype Semantic web Cerebrotendinous xanthomatosis 



The work presented in this paper has been developed in the funded national project Gestión de Terminologías Médicas para Arquetipos (TIN2009-14159-C05-05) by the Ministerio de Educación y Ciencia.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Shahar, Y., and Musen, M., Knowledge-based temporal abstraction in clinical domains. Artif. Intell. Med. 8(3):267–298, 1996.CrossRefGoogle Scholar
  2. 2.
    Dechter, R., Meiri, I., and Pearl, J., Temporal constraint networks. Artif. Intell. 49:61–95, 1991.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Pustejovsky, J., Castaño, J., Ingria, R., Saurí, R., Gaizauskas, R., Setzer, A., Katz, G. TimeML: robust specification of event and temporal expressions in text. Proc of the Fifth International Workshop on Computational Semantics. Accessed 10 June 2012, 2003.
  4. 4.
    Marín, R., Cárdenas, M. A., Balsa, M., and Sánchez, J. L., Obtaining solutions in fuzzy constraint networks. Int. J. Approx. Reason. 16(3–4):261–288, 1996.Google Scholar
  5. 5.
    McGuinness, D., and van Harmelen, F. OWL web ontology language overview. Accessed 10 June 2012, 2004
  6. 6.
    Hobbs, J. R., and Pan, F. Time ontology in OWL. Accessed 10 June 2012, 2006.
  7. 7.
    O’Connor, M. J., and Das, A. K., A method for representing and querying temporal information in OWL. In: Fred, A., Filipe, J., and Gamboa, H. (Eds.), Biomedical engineering systems and technologies, vol. 127. Springer, Berlin, pp. 97–110, 2011.CrossRefGoogle Scholar
  8. 8.
    Tao, C., Wei, W. Q., Solbrig, H. R., Savova, G., Chute, C. G. CNTRO: a semantic web ontology for temporal relation inferencing in clinical narratives. Proc of the AMIA Annual Symposium pp 787–791. Accessed 10 June 2012, 2010.
  9. 9.
    Zhou, L., Parsons, S., and Hripcsak, G., The evaluation of a temporal reasoning system in processing clinical discharge summaries. J. Am. Med. Inform. Assoc. 15:99e106, 2008.Google Scholar
  10. 10.
    Mannila, H., and Moen, P., Similarity between event types in sequences. In: Mohania, M., and Tjoa, A. M. (Eds.), Proc of the first intl. conf. on data warehousing and knowledge discovery. Springer, London, pp. 271–280, 1999.Google Scholar
  11. 11.
    Juarez, J. M., Guil, F., Palma, J., and Marin, R., Temporal similarity by measuring possibilistic uncertainty in CBR. Fuzzy Set Syst. 160(2):214–230, 2009.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Federico, A., and Dotti, M. T., Cerebrotendinous xanthomatosis: clinical manifestations, diagnostic criteria, pathogenesis, and therapy. J. Child Neurol. 18:633–638, 2003.CrossRefGoogle Scholar
  13. 13.
    Shoham, Y., Temporal logics in AI: semantical and ontological considerations. Artif. Intell. 33:89–104, 1987.MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Seidenberg, J., and Rector, A. Web ontology segmentation: analysis, classification and use. In: Proc of the 15th International Conference on World. New York: ACM, pp 23–26, 2006.Google Scholar
  15. 15.
    Robinson, P. N., and Mundlos, S., The human phenotype ontology. Clin. Genet. 77:525–534, 2010.CrossRefGoogle Scholar
  16. 16.
    Knublauch, H., Fergerson, R., Noy, N., and Musen, M., The Protégé OWL plugin: an open development environment for semantic web applications. Lect. Notes Comput. Sci. 3298:229–243, 2004.CrossRefGoogle Scholar
  17. 17.
    O’Connor, M., and Das, A. SQWRL: a Query Language for OWL. In: Proc of the Fifth International Workshop on OWL: experiences and directions. Accessed 10 June 2012, 2009.
  18. 18.
    Pilo, B. Xantomatosis Cerebrotendinosa en España: mutaciones, aspectos clínicos y terapéuticos. Dissertation, University of Alcalá de Henares, 2009.Google Scholar
  19. 19.
    Pilo, B., Jimenez-Escrig, A., Lorenzo, J. R., Pardo, J., Arias, M., Ares-Luque, A., Duarte, J., Muñiz-Pérez, S., and Sobrido, M. J., Cerebrotendinous xanthomatosis in Spain: clinical, prognostic, and genetic survey. Eur. J. Neurol. 18(10):1203–1211, 2011.CrossRefGoogle Scholar
  20. 20.
    Juarez, J. M., Campos, M., Palma, J., and Marin, R., TCare: temporal case retrieval system. Expert. Syst. 22(4):324–338, 2011.CrossRefGoogle Scholar
  21. 21.
    Drummond, N., and Shearer, R. The open world assumption. Accessed 10 June 2012, 2006.
  22. 22.
    Dojat, M., Ramaux, N., and Fontaine, D., Scenario recognition for temporal reasoning in medical domains. Artif. Intell. Med. 14(1–2):139–155, 1998.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • María Taboada
    • 1
    Email author
  • Verónica Álvarez
    • 1
  • Diego Martínez
    • 2
  • Belén Pilo
    • 3
  • Peter N. Robinson
    • 4
  • María J. Sobrido
    • 5
  1. 1.Department of Electronics and Computer ScienceUniversity of Santiago de CompostelaSantiago de CompostelaSpain
  2. 2.Department of Applied PhysicsUniversity of Santiago de CompostelaSantiago de CompostelaSpain
  3. 3.Section of Neurology, Hospital del Sureste, Arganda del ReyMadridSpain
  4. 4.Institut für Medizinische Genetik und Humangenetik, Charité - Universitätsmedizin BerlinBerlinGermany
  5. 5.Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela. Center for Biomedical Research on Rare Diseases (CIBERER), Institute of Health Carlos IIIMadridSpain

Personalised recommendations