Journal of Medical Systems

, Volume 36, Issue 6, pp 3573–3581 | Cite as

An Improved Medical Decision Support System to Identify the Diabetic Retinopathy Using Fundus Images

  • S. Jerald Jeba Kumar
  • M. MadheswaranEmail author
Original Paper


An improved Computer Aided Clinical Decision Support System has been developed to classify the retinal images using Neural Network and presented in this paper. The Optic Disc Parameters, thickness of the blood vessels, main vessel, and branch vessel and vein diameter have been extracted. Various types of Neural Network have been used for classification. The percentage of False Acceptance Rate and False Rejection Rate of the SVM classifier is found less than other classifiers. The accuracy of the proposed system has been verified and found to be 97.47%.


Gabor filtering Adaptive histogram equalization Optic disc measurement RGB segmentation OCT Skeletonization Vein diameter measurement SVM 



The authors are thankful to Dr. Bejan Singh, Bejan Singh Eye Hospital, Nagarcoil, India for providing required images and clinical suggestions to carry out the present research.


  1. 1.
    Sivakumar, R., “Neural Network Based Diabetic Retinopathy Classification Using Phase spectral Periodicity components”. ICGST-BIME Journal 7(1):23–28, 2007.MathSciNetGoogle Scholar
  2. 2.
    Maberley, D. A., King, W., Cruess, A. F., and Koushik, A., Risk factors for diabetic retinopathy in the Cree of James Bay. Ophthalmic Epidemiol. 9(3):153–167, 2002.CrossRefGoogle Scholar
  3. 3.
    Salem, M., and Ajlouni, K., Diabetic retinopathy among Jordanians: its pattern, severity and some associated risk factors. Am. J. Hum. Genet 66:1229–1236, 2000.CrossRefGoogle Scholar
  4. 4.
    Agam Ch. Wu, G., and Stanchev P., “A general framework for vessel segmentation in retinal images,” in Proc. IEEE Int. Symp. Comput. Intel.Rob. Autom., pp. 37–42, June 2007Google Scholar
  5. 5.
    Reza, A. W., and Eswaran, C., A “Decision Support System for Automatic Screening of Non-proliferative Diabetic Retinopathy”. J Med Syst 35:17–24, 2011. doi: 10.1007/s10916-009-9337.CrossRefGoogle Scholar
  6. 6.
    Miri, M. S., and Mahloojifar, A., “Retinal Image Analysis Using Curvelet Transform and Multistructure Elements Morphology by Reconstruction”. IEEE Transactions on Biomedical Engineering 58(5):1183–1193, 2011.CrossRefGoogle Scholar
  7. 7.
    Supot, S., Thanapong, Ch., Chuchart, P., and Manas, S., “Automatic segmentation of blood vessels in retinal image based on fuzzy k-median clustering,” in Proc. IEEE Int. Conf. Integr. Technol. 584–588, 2007.Google Scholar
  8. 8.
    Adel, M., Moussaoui, A., Rasigni, M., Bourennane, S., and Hamami, L., “Statistical-Based Tracking Technique for Linear Structures Detection: Application to Vessel Segmentation in Medical Images”. IEEE Signal Processing Letters 17(6):555–560, 2010.CrossRefGoogle Scholar
  9. 9.
    Che Azemin, M. Z., Kumar, D. K., Wong, T. Y., Kawasaki, R., Mitchell, P., and Wang, J. J., Robust Methodology for Fractal Analysis of the Retinal Vasculature. IEEE Transactions On Medical Imaging 30(2):243–251, 2011.CrossRefGoogle Scholar
  10. 10.
    Benson, S. Y., Lam, Member, IEEE, Yongsheng Gao, Senior Member, IEEE, and Alan Wee-Chung Liew, Senior Member, IEEE “General Retinal Vessel Segmentation Using Regularization-Based Multiconcavity Modeling” IEEE Transactions On Medical Imaging, vol. 29, no. 7, 1369–1381, 2010.Google Scholar
  11. 11.
    Marín, D., Aquino, A., Gegúndez-Arias, M. E., and Bravo, J. M., “A New Supervised Method for Blood Vessel Segmentation in Retinal Images by Using Gray-Level and Moment Invariants-Based Features”. IEEE Transactions on Medical Imaging 30(1):146–158, 2011.CrossRefGoogle Scholar
  12. 12.
    Miles, P., and Nuttall, A. L., “Matched filter estimation of serial blood vessel diameters from video images,”. IEEE Trans. Med. Imag. 12:147–152, 1993.CrossRefGoogle Scholar
  13. 13.
    Siddalingaswamy, P. C., and Gopalakrishna Prabhu, K., "Automatic Localization and Boundary Detection of Optic Disc Using Implicit Active Contours". International Journal of Computer Applications 1(7):1–5, 2010.CrossRefGoogle Scholar
  14. 14.
    Itai, N., Tanito, M., and Chihara, E., “Comparison of Optic Disc Topography Measured by Retinal Thickness Analyzer with Measurement by Heidelberg Retina Tomograph II”. Japanese Journal of Ophthalmology 47(2):214–220, 2003.CrossRefGoogle Scholar
  15. 15.
    Wu, D., Zhang, M., Liu, J-C., and Bauman,W., “On the Adaptive Detection of Blood Vessels in Retinal Images”, IEEE Transactions on Biomedical Engineering, Vol. 53, No. 2, 2006.Google Scholar
  16. 16.
    Hashem, H. A., Salaheldine, M. M., Karawya, S. S., and Kamal, H.F., “Optical Coherence Tomography Study of Typical and Atypical Cases of Retinitis Pigmentosa”, Journal of American Science, Vol.6, No.10, 2010.Google Scholar
  17. 17.
    Nedzvetskaya, O.V. Chumak, S.A. Clinical and function characteristics of changes in optic nerve in juvenile diabetic retinopathy, Annals of Ophthalmology, 3, 2001.Google Scholar
  18. 18.
    Verrotti, A., Lobefalo, L., Trotta, D., Della Loggia, G., Chiarelli, F., Luigi, C., Morgese, G., and Gallenga, P., Visual evoked potentials in young persons with newly diagnosed diabetes: a long-term follow-up. Dev Med Child Neurol. 42(4):240–244, 2000.CrossRefGoogle Scholar
  19. 19.
    Ricci, E., and Perfetti, R., “Retinal blood vessel segmentation using line operators and support vector classification”. IEEE Trans Med Imaging 26(10):1357–65, 2007.CrossRefGoogle Scholar
  20. 20.
    Sivakumar, R., Ravindran, G., Using Feed Forward Neural Network to discriminate abnormal subjects using the Visual Evoked Potential Spectral Components, Proc. Of Sixth International Conference on Cognitive and Neural Systems, 2002.Google Scholar
  21. 21.
    Aquino, A., Manuel Emilio Gegundez, Diego Martın “Automated Optic Disc Detection in Retinal Images of Patients with Diabetic Retinopathy and Risk of Macular Edema” World Academy of Science. Engineering and Technology 60:85–91, 2009.Google Scholar
  22. 22.
    Abdallah, M. B., Malek, J., Krissian, K., and Tour, R., “An Automated Vessel Segmentation of Retinal Images Using multiscale Vesselness”,8th International Multi-Conference on Systems, Signals & Devices, 1–6, 2011.Google Scholar
  23. 23.
    Yannis, A., Tolias, Student, IEEE, and Stavros M. Panas, Member, IEEE “ A Fuzzy Vessel Tracking Algorithm for Retinal Images Based on Fuzzy Clustering” IEEE Transactions on Medical Imaging, VOL. 17, NO. 2, 263–273, 1998.Google Scholar
  24. 24.
    Suganthi, M., and Madheswaran, M., “An improved Medical Decision System to Indentify the Breast Cancer Using Mammogrm”. J Med System, 2010. doi: 10.1007/s10916-010-9448-5.
  25. 25.
    Junqing Chen, Member, IEEE, Thrasyvoulos N. Pappas, Senior Member, IEEE, Aleksandra Mojsilovic’, Member, IEEE and Bernice E. Rogowitz, Senior Member, IEEE “Adaptive Perceptual Color-Texture Image Segmentation” IEEE Transactions on Image Processing, vol. 14, no. 10, 1524–1536, 2005.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of ECEThe Rajaas Engineering CollegeVadakkankulamIndia
  2. 2.Center for Advanced Research, Muthayammal Engineering CollegeRasipuramIndia

Personalised recommendations