Journal of Medical Systems

, Volume 36, Issue 5, pp 2865–2879 | Cite as

Directional Binary Wavelet Patterns for Biomedical Image Indexing and Retrieval

  • Subrahmanyam MuralaEmail author
  • R. P. Maheshwari
  • R. Balasubramanian


A new algorithm for medical image retrieval is presented in the paper. An 8-bit grayscale image is divided into eight binary bit-planes, and then binary wavelet transform (BWT) which is similar to the lifting scheme in real wavelet transform (RWT) is performed on each bitplane to extract the multi-resolution binary images. The local binary pattern (LBP) features are extracted from the resultant BWT sub-bands. Three experiments have been carried out for proving the effectiveness of the proposed algorithm. Out of which two are meant for medical image retrieval and one for face retrieval. It is further mentioned that the database considered for three experiments are OASIS magnetic resonance imaging (MRI) database, NEMA computer tomography (CT) database and PolyU-NIRFD face database. The results after investigation shows a significant improvement in terms of their evaluation measures as compared to LBP and LBP with Gabor transform.


Directional Binary Wavelet Patterns (DBWP) Local Binary Patterns (LBP) Image retrieval 



This work was supported by the Ministry of Human Resource and Development India under grant MHR-02-23-200 (429). The authors would like to thank the anonymous reviewers for insightful comments and helpful suggestions to improve the quality, which have been incorporated in this manuscript.


  1. 1.
    Mueen, A., Zainuddin, R., and Sapiyan Baba, M., MIARS: A medical image retrieval system. J. Med. Syst. 34:859–864, 2010.CrossRefGoogle Scholar
  2. 2.
    Chu, W., Hsu, C., Cardenas, C., and Taira, R., Acknowledge-based image retrieval with spatial and temporal constructs. IEEE Trans. Knowl. Data Eng. 10(6):872–888, 1998.CrossRefGoogle Scholar
  3. 3.
    Shyu, C., Kak, A., Kosaka, A., Aisen, A., and Broderick, L., ASSERT: A physician-in-the-loop content-based inage retrieval system for HRCT image databases. Comput. Vis. Image Underst. 75:111–132, 1998.CrossRefGoogle Scholar
  4. 4.
    Müller, H., Lovis, C., Geissbuhler, A., Medical image retrieval—the MedGIFT project. Medical Imaging and Telemedicine, 2–7, 2005.Google Scholar
  5. 5.
    Rui, Y., and Huang, T. S., Image retrieval: Current techniques, promising directions and open issues. J. Vis. Commun. Image Represent. 10:39–62, 1999.CrossRefGoogle Scholar
  6. 6.
    Smeulders, A. W. M., Worring, M., Santini, S., Gupta, A., and Jain, R., Content-based image retrieval at the end of the early years. IEEE Trans. Pattern Anal. Mach. Intell. 22(12):1349–1380, 2000.CrossRefGoogle Scholar
  7. 7.
    Kokare, M., Chatterji, B. N., and Biswas, P. K., A survey on current content based image retrieval methods. IETE J. Res. 48(3&4):261–271, 2002.Google Scholar
  8. 8.
    Lew, M. S., Sebe, N., Djerba, C., and Jain, R., Content-based multimedia information retrieval: State of the art and challenges. ACM Trans. Multimedia Comput., Commun., Appl. 2(1):1–19, 2006.CrossRefGoogle Scholar
  9. 9.
    Liu, Y., Zhang, D., Guojun, Lu, and Ma, W.-Y., Asurvey of content-based image retrieval with high-level semantics. J. Pattern Recognition 40:262–282, 2007.zbMATHCrossRefGoogle Scholar
  10. 10.
    Müller, H., Michoux, N., Bandon, D., and Geisbuhler, A., A review of content-based image retrieval systems in medical applications–Clinical benefits and future directions. J. Med. Inf. 73(1):1–23, 2004.CrossRefGoogle Scholar
  11. 11.
    Manjunath, K. N., Renuka, A., and Niranjan, U. C., Linear models of cumulative distribution function for content-based medical image retrieval. J. Med. Syst. 31:433–443, 2007.CrossRefGoogle Scholar
  12. 12.
    Woo Chaw Seng, and Seyed Hadi Mirisaee, Evaluation of a content-based retrieval system for blood cell images with automated methods. J. Med. Syst. doi: 10.1007/s10916-009-9393-3.
  13. 13.
    Fahimeh Sadat Zakeri, Hamid Behnam, Nasrin Ahmadinejad, Classification of benign and malignant breast masses based on shape and texture features in sonography images. J. Med. Syst. doi: 10.1007/s10916-010-9624-7.
  14. 14.
    Yang, L., Student, Jin, R., Mummert, L., Sukthankar, R., Goode, A., Zheng, B., Hoi, S. C. H., and Satyanarayanan, M., A boosting framework for visuality-preserving distance metric learning and its application to medical image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 32(1):33–44, 2010.Google Scholar
  15. 15.
    Quellec, G., Lamard, M., Cazuguel, G., Cochener, B., and Roux, C., Wavelet optimization for content-based image retrieval in medical databases. J. Med. Imag. Anal. 14:227–241, 2010.CrossRefGoogle Scholar
  16. 16.
    Traina, A, Castanon, C, Traina, C Jr., Multiwavemed: A system for medical image retrieval through wavelets transformations. Proc. 16th IEEE Symp. Comput.-Based Med. Syst., New York, USA, 150–155, 2003.Google Scholar
  17. 17.
    Felipe, J. C., Traina, A. J. M., Traina, C. Jr., Retrieval by content of medical images using texture for tissue identification. 16th IEEE Symp. Comput.-Based Med. Syst., New York, USA, 175–180, 2003.Google Scholar
  18. 18.
    Müller, H., Rosset, A., Vallét, J. -P., Geisbuhler, A., Comparing feature sets for content-based image retrieval in a medical case database. Proc. SPIE Med. Imag., PACS Imag. Inf., San Diego, USA, 99–109, 2004.Google Scholar
  19. 19.
    Swanson, M. D., and Tewfik, A. H., A binary wavelet decomposition of binary images. IEEE Trans. Image Process. 5:1637–1650, 1996.CrossRefGoogle Scholar
  20. 20.
    Kamstra, L., The design of linear binary wavelet transforms and their application to binary image compression. IEEE Inter. Conf. Image Processing, ICIP’03, 241–244, 2003.Google Scholar
  21. 21.
    Kamstra, L., Nonlinear binary wavelet transforms and their application to binary image compression. Proc. 2003 IEEE Inter. Conf. Image Processing, ICIP’02, 3 593–596, 2002.Google Scholar
  22. 22.
    Gerek, Ö. N., Çetin, A. E., Tewfik, A. H., Subband coding of binary textual images for document retrieval. Proc. 2003 IEEE Inter. Conf. Image Processing, ICIP’96, 899–902, 1996.Google Scholar
  23. 23.
    Pan, H., Jin, L.-Z., Yuan, X.-H., Xia, S.-Y., and Xia, L.-Z., Context-based embedded image compression using binary wavelet transform. J. Image Vision Computing 28:991–1002, 2010.CrossRefGoogle Scholar
  24. 24.
    Pan, H., Siu, W. C., and Law, N. F., Lossless image compression employing binary wavelet transform. IET Image Process. 1(4):353–362, 2007.CrossRefGoogle Scholar
  25. 25.
    Law, N. F., and Siu, W. C., A filter design strategy for binary field wavelet transform using the perpendicular constraint. J. Signal Process. 87(11):2850–2858, 2007.zbMATHCrossRefGoogle Scholar
  26. 26.
    Ojala, T., Pietikainen, M., and Harwood, D., A comparative sudy of texture measures with classification based on feature distributions. J. Pattern Recognition 29(1):51–59, 1996.CrossRefGoogle Scholar
  27. 27.
    Ojala, T., Pietikainen, M., and Maenpaa, T., Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7):971–987, 2002.CrossRefGoogle Scholar
  28. 28.
    Pietikainen, M., Ojala, T., Scruggs, T., Bowyer, K. W., Jin, C., Hoffman, K., Marques, J., Jacsik, M., and Worek, W., Overview of the face recognition using feature distributions. J. Pattern Recognition 33(1):43–52, 2000.CrossRefGoogle Scholar
  29. 29.
    Li, M., and Staunton, R. C., Optimum Gabor filter design and local binary patterns for texture segmentation. J. Pattern Recognition 29:664–672, 2008.CrossRefGoogle Scholar
  30. 30.
    Guo, Z., Zhang, L., and Zhang, D., Rotation invariant texture classification using LBP variance with global matchning. J. Pattern Recognition 43:706–716, 2010.zbMATHCrossRefGoogle Scholar
  31. 31.
    Liao, S., Law, M. W. K., and Chung, A. C. S., Dominant local binary patterns for texture classification. IEEE Tans. Image Proc. 18(5):1107–1118, 2009.CrossRefGoogle Scholar
  32. 32.
    Guo, Z., Zhang, L., and Zhang, D., A completed modeling of local binary pattern operator for texture classification. IEEE Tans. Image Proc. 19(6):1657–1663, 2010.CrossRefGoogle Scholar
  33. 33.
    Peng, S., Kim, D., Lee, S., and Lim, M., Texture feature extraction on uniformity estimation for local brightness and structure in chest CT images. J. Compt. Bilogy Medic. 40:931–942, 2010.CrossRefGoogle Scholar
  34. 34.
    Unay, D., Ekin, A., and Jasinschi, R. S., Local structure-based region-of-interest retrieval in brain MR images. IEEE Trans. Infor. Tech. Biomedicine 14(4):897–903, 2010.CrossRefGoogle Scholar
  35. 35.
    Sørensen, L., Shaker, S. B., and de Bruijne, M., Quantitative analysis of pulmonary emphysema using local binary patterns. IEEE Trans. Medical Imaging 29(2):559–569, 2010.CrossRefGoogle Scholar
  36. 36.
    Ahonen, T., Hadid, A., and Pietikainen, M., Face description with local binary patterns: Applications to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 28(12):2037–2041, 2006.CrossRefGoogle Scholar
  37. 37.
    Zhao, G., and Pietikainen, M., Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans. Pattern Anal. Mach. Intell. 29(6):915–928, 2007.CrossRefGoogle Scholar
  38. 38.
    Ning, J., Zhang, L., Zhang, D., and Chengke, W., Robust object tracking using joint color-texture histogram. Int. J. Pattern Recogn. Artif. Intell. 23(7):1245–1263, 2009.CrossRefGoogle Scholar
  39. 39.
    Nanni, L., and Lumini, A., Local binary patterns for a hybrid fingerprint matcher. J. Pattern Recognition 41:3461–3466, 2008.zbMATHCrossRefGoogle Scholar
  40. 40.
    Marcus, D. S., Wang, T. H., Parker, J., Csernansky, J. G., Morris, J. C., and Buckner, R. L., Open access series of imaging studies (OASIS): Crosssectional MRI data in young, middle aged, nondemented, and demented older adults. J. Cogn. Neurosci. 19(9):1498–1507, 2007.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Subrahmanyam Murala
    • 1
    Email author
  • R. P. Maheshwari
    • 2
  • R. Balasubramanian
    • 3
  1. 1.Instrumentation and Signal Processing Laboratory, Department of Electrical EngineeringIndian Institute of Technology RoorkeeRoorkeeIndia
  2. 2.Department of Electrical EngineeringIndian Institute of Technology RoorkeeRoorkeeIndia
  3. 3.Department of MathematicsIndian Institute of Technology RoorkeeRoorkeeIndia

Personalised recommendations