Identification of Hand and Finger Movements Using Multi Run ICA of Surface Electromyogram


Surface electromyogram (sEMG) based control of prosthesis and computer assisted devices can provide the user with near natural control. Unfortunately there is no suitable technique to classify sEMG when the there are multiple active muscles such as during finger and wrist flexion due to cross-talk. Independent Component Analysis (ICA) to decompose the signal into individual muscle activity has been demonstrated to be useful. However, ICA is an iterative technique that has inherent randomness during initialization. The average improvement in classification of sEMG that was separated using ICA was very small, from 60% to 65%. To overcome this problem associated with randomness of initialization, multi-run ICA (MICA) based sEMG classification system has been proposed and tested. MICA overcame the shortcoming and the results indicate that using MICA, the accuracy of identifying the finger and wrist actions using sEMG was 99%.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    The I-Limb Hand, Touch Bionics.

  2. 2.

    Basmajian, J., and Deluca, C., Muscles alive: their functions revealed by electromyography, 5th Edn. Williams & Wilkins: Baltimore, 1985.

    Google Scholar 

  3. 3.

    Bell, A. J., and Sejnowski, T. J., An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 7(6):1129–1159, 1995.

    Article  Google Scholar 

  4. 4.

    Chan, A. D. C., and Englehart, K. B., Continuous myoelectric control for powered prostheses using hidden Markov models. IEEE Trans. Biomed. Eng. 52(1):121–124, 2005. doi:10.1109/TBME.2004.836492.

    Article  Google Scholar 

  5. 5.

    Chan, F. H. Y., Yang, Y. S., Lam, F. K., Zhang, Y. T., and Parker, P. A., Fuzzy emg classification for prosthesis control. IEEE Trans. Rehabil. Eng. 8(3):305–311, 2002.

    Article  Google Scholar 

  6. 6.

    Cheron, G., Draye, J. P., Bourgeios, M., and Libert, G., A dynamic neural network identification of electromyography and arm trajectory relationship during complex movements. IEEE Trans. Biomed. Eng. 43(5):552–558, 1996. doi:10.1109/10.488803.

    Article  Google Scholar 

  7. 7.

    Cichocki, A., and Amari, S. I., Adaptive blind signal and image processing: learning algorithms and applications. Wiley: New York, 2002.

    Google Scholar 

  8. 8.

    Djuwari, D., Kumar, D. K., Arjunan, S. P., and Naik, G. R., Limitations and applications of ICA for surface electromyogram-validation for identifying hand gestures. Special Issue on Biomedical Signal Sensing and Intelligent Information Processing, International Journal of Computational Intelligence and Applications (IJCIA) 7(3):281–300, 2008.

    Google Scholar 

  9. 9.

    Doerschuk, P. C., Gustafon, D. E., and Willsky, A. S., Upper extremity limb function discrimination using emg signal analysis. IEEE Trans. Biomed. Eng. BME-30(1):18–29, 1983.

    Article  Google Scholar 

  10. 10.

    Farry, K. A., Walker, I. D., and Baraniuk, R. G., Myoelectric teleoperation of a complex robotic hand. IEEE Trans. Robot. Autom. 12(5):775–788, 1996.

    Article  Google Scholar 

  11. 11.

    Fridlund, A. J., and Cacioppo, J. T., Guidelines for human electromyographic research. Psychophysiology 23(5):567–589, 1986.

    Article  Google Scholar 

  12. 12.

    Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., and Tatham, R. L., Multivariate data analysis. Prentice Hall: London, 2006.

    Google Scholar 

  13. 13.

    Hudgins, B., Parker, P., and Scott, R. N., A new strategy for multifunction myoelectric control. IEEE Trans. Biomed. Eng. 40(1):82–94, 1993.

    Article  Google Scholar 

  14. 14.

    Hyvarinen, A., Karhunen, J., and Oja, E., Independent component analysis. Wiley-Interscience: New York, 2001.

    Google Scholar 

  15. 15.

    Jung, T. P., Makeig, S., Lee, T. W., Mckeown, M. J., Brown, G., Bell, A. J., and Sejnowski, T. J., Independent component analysis of biomedical signals. In: In Proc. Int. Workshop on Independent Component Analysis and Signal Separation. Vol. 20, pp. 633–644, 2000.

  16. 16.

    Koike, Y., Kawato, M., Human interface using surface electromyography signals. Elec. Commun. Jap. Part 3 Fundam. Elec. Sci. 79(9):15–22, 1996.

    Google Scholar 

  17. 17.

    Makeig, S., Bell, A. J., Jung, T. P., and Sejnowski, T. J., Independent component analysis of electroencephalographic data. In: Touretzky, D.S., Mozer, M.C., and Hasselmo M.E., (Eds.), Advances in Neural Information Processing Systems. Vol. 8, pp. 145–151. MIT: Cambridge, 1996.

    Google Scholar 

  18. 18.

    McKeown, M.J., Cortical activation related to arm-movement. Muscle Nerve 23(S9):S19–S25, 2000.

    Article  Google Scholar 

  19. 19.

    McKeown, M. J., and Radtke, R., Phasic and tonic coupling between EEG and EMG demonstrated with independent component analysis. J. Clin. Neurophysiol.: Official Publ. Am. Electroencephalogr. Soc. 18(1):45–57, 2001.

    Article  Google Scholar 

  20. 20.

    Momen, K., Krishnan, S., and Chau, T., Real-time classification of forearm electromyographic signals corresponding to user-selected intentional movements for multifunction prosthesis control. IEEE Trans. Neural Syst. Rehabil. Eng.: A Publ. IEEE Eng. Med. Biol. Soc. 15(4):535–542, 2007.

    Article  Google Scholar 

  21. 21.

    Naik, G. R., Kumar, D. K., and Palaniswami, M., Multi run ICA and surface emg based signal processing system for recognising hand gestures. In: 8th IEEE International Conference on Computer and Information Technology, 2008. CIT 2008. pp. 700–705, 2008. doi:10.1109/CIT.2008.4594760.

  22. 22.

    Naik, G. R., Kumar, D. K., Singh, V. P., and Palaniswami, M., Hand gestures for HCl using ICA of EMG. In: Vishci ’06: Proceedings of the Hcsnet Workshop on Use of Vision in Human–Computer Interaction, pp. 67–72. Australian Computer Society, Inc., 2006.

  23. 23.

    Naik, G. R., Kumar, D. K., and Weghorn, H., Performance comparison of ICA algorithms for isometric hand gesture identification using surface EMG. In: 3rd IEEE International Conference on Intelligent Sensors Sensor Networks and Information Processing. pp. 613–618, 2008.

  24. 24.

    Nakamura, H., Yoshida, M., Kotani, M., Akazawa, K., and Moritani, T., The application of independent component analysis to the multi-channel surface electromyographic signals for separation of motor unit action potential trains: part I—measuring techniques. J. Electromyogr. Kinesiol.: Official J. Int. Soc. Electrophysiol. Kinesiol. 14(4):423–432, 2004. doi:10.1016/j.jelekin.2004.01.004.

    Google Scholar 

  25. 25.

    Pavlovic, V., Sharma, R., and Huang, T. S., Visual interpretation of hand gestures for human–computer interaction: a review. IEEE Trans. Pattern Anal. Mach. Intell. 19(7):677–695, 1997.

    Article  Google Scholar 

  26. 26.

    Peleg, D., Braiman, E., Yom-Tov, E., and Inbar, G. F., Classification of finger activation for use in a robotic prosthesis arm. IEEE Trans. Neural Syst. Rehabil. Eng.: A Publ. IEEE Eng. Med. Biol. Soc. 12(5):775–788, 1996.

    Google Scholar 

  27. 27.

    Rehg, J., and Kanade, T., Digiteyes: vision-based human hand tracking. Tech. Rep. CMU TR CMU-CS-93-220, Extended version of paper in ECCV May 1994 Stockholm, 1993.

  28. 28.

    Schlenzig, J., Hunter, E., and Jain, R., Vision based hand gesture interpretation using recursive estimation. In: 1994 Conference Record of the Twenty-Eighth Asilomar Conference on Signals, Systems and Computers. Vol. 2, pp. 1267–1271, 1994. doi:10.1109/ACSSC.1994.471662.

  29. 29.

    Tenore, F., Ramos, A., Fahmy, A., Acharya, S., Etienne-Cummings, R., and Thakor, N. V., Towards the control of individual fingers of a prosthetic hand using surface emg signals. Conference proceedings: ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference 2007. pp. 6146–6149, 2007.

  30. 30.

    Wheeler, K. R., and Jorgensen, C. C., Gestures as input: neuroelectric joysticks and keyboards. IEEE Pervasive Computing 2(2):56–61, 2003. doi:10.1109/MPRV.2003.1203754.

    Article  Google Scholar 

  31. 31.

    Zardoshti-Kermani, M., Wheeler, B. C., Badie, K., and Hashemi, R. M., Emg feature evaluation for movement control of upper extremity prostheses. IEEE Trans. Rehabil. Eng. [see also IEEE Trans. Neural Sys. Rehabil.] 3(4):324–333, 1995.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Ganesh R. Naik.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Naik, G.R., Kumar, D.K. Identification of Hand and Finger Movements Using Multi Run ICA of Surface Electromyogram. J Med Syst 36, 841–851 (2012).

Download citation


  • Hand gesture sensing
  • Bio-signal analysis
  • Surface electromyography (sEMG)
  • Independent component analysis (ICA)
  • Bio-sensors
  • Blind source separation (BSS)
  • Multi run ICA