Fogel, R. B., Malhotra, A., Dalagiorgou, G., Robinson, M. K., et al., Anatomic and physiologic predictors of apnea severity in morbidly obese subjects. Sleep 26:150–155, 2003.
Google Scholar
Várady, P., Micsik, T., Benedek, S., Benyó, Z., A Novel method for the detection of apnea and hypopnea events in respiration signals. IEEE Trans. BME 49(9):936–942, 2002.
Article
Google Scholar
McNames, J. N., Fraser, A. M., Obstructive sleep apnea classification based on spectrogram patterns in the electrocardiogram. Comput. Cardiol. 27:749–752, 2000.
Google Scholar
Shinar, Z., Baharav, A., Obstructive sleep apnea detection based on electrocardiogram analysis. Comput. Cardiol. 27:757–760, 2000.
Google Scholar
Suhas, S. R., Behbehani, K., Vijendra, S., et al., Time domain analysis of R-wave attenuation envelope for sleep apnea detection. Eng. Med. Biol. Soc. 2:3885–3888, 2004.
Google Scholar
Álvarez, D., Hornero, R., et al., Improving diagnostic ability of blood oxygen saturation from overnight pulse oximetry in obstructive sleep apnea detection by means of central tendency measure. Artif. Intell. Med. 41(1):13–24, 2007.
Article
Google Scholar
Romero, O. F., Berdin, G., Betanzos, A. A., Bonillo, V. M., A new method for sleep apnea classification using wavelets and feed forward neural networks. Artif. Intell. Med. 34:65–76, 2005.
Article
Google Scholar
Tagluk, M. E., Akin, M., Sezgin, N., Classification of sleep apnea by using wavelet transform and artificial neural networks. Expert Syst. Appl. 37(2):1600–1607, 2010.
Article
Google Scholar
Tagluk, M. E., Sezgin, N., Classification of sleep apnea through sub-band energy of abdominal effort signal using wavelets + neural networks. J. Med. Syst., 2009, doi:10.1007/s10916-009-9330-5.
Google Scholar
Bronzino, J. D., The biomedical engineering handbook. 2nd ed. CRC: Boca Raton, pp. 15, 2000.
Google Scholar
Aydın, S., Comparison of power spectrum predictors in computing coherence functions for intracortical EEG signals. Ann. Biomed. Eng. 37(1):192–200, 2009.
Article
Google Scholar
Koenig, T., Prichep, L., et al., Decreased EEG synchronization in Alzheimer’s disease and mild cognitive impairment. Neurobiol. Aging 26:165–171, 2005.
Article
Google Scholar
Aydın, S., Computer based synchronization analysis on sleep EEG in insomnia. J. Med. Syst., 2009. doi:10.1007/s10916-009-9387-1, (published online on October 21, 2009).
Google Scholar
Duman, F., Erdamar, A., Eroǧul, O., Telatar, Z., Yetkin, S., Efficient sleep spindle detection algorithm with decision tree. Expert Syst. Appl. 36(6):9980–9985, 2009.
Article
Google Scholar
Culebras, A., Clinical handbook of sleep disorders. Butterworth-Heinemann: Boston, 1996.
Google Scholar
Susmakova, K., Human sleep and sleep EEG. Meas. Sci. Rev. 4(2):59, 2004.
Google Scholar
Boccaletti, S. et al., The synchronization of chaotic systems. Phys. Rep. 366:1–101, 2002.
MathSciNet
MATH
Article
Google Scholar
Pereda, E., Quiroga, R. Q., Nonlinear multivariate analysis of neurophysiologic signals. Prog. Neurobiol. 77:1–37, 2005.
Article
Google Scholar
Koenig, T., Lehmann, D., et al., Decreased functional connectivity of EEG theta-frequency activity in first-episode, neuroleptic-native patients with schizophrenia: Preliminary results. Schizophr. Res. 50:55–60, 2001.
Article
Google Scholar
Ferria, R., Rundo, F., Bruni, O., Dynamics of the EEG slow-wave synchronization during sleep. Clin. Neurophysiol. 116:2783–2795, 2005.
Article
Google Scholar
Pizzagalli, D., Lehmann, D., Gianotti, L., et al., Brain electric correlates of strong belief in paranormal phenomena: Intracerebral EEG source and regional Omega complexity analyses. Neuroimaging 100:139–154, 2000.
Google Scholar
Rappelsberger, P., Petsche, H., Probability mapping: Power and coherence analysis of cognitive processes. Brain Topogr. 1:46–54, 1988.
Article
Google Scholar
Proakis, J. G., Manolakis, D. G., Digital signal processing. 3rd ed., sec. 12. Prentice Hall: Upper Saddle River, pp. 925–956, 1996.
Google Scholar
Aydın, S., Determination of autoregressive model orders for seizure detection. Turk. J. Elec. Eng. Comp. Sci. 18(1):1–22, 2010. doi:10.3906/elk-0906-83.
Google Scholar
Neumaier, A., Shneider, T., Estimation of parameters and Eigen modes of multivariate autoregressive models. ACM Trans. Math. Soft. 27(1):27–57, 2001.
MATH
Article
Google Scholar
Wang, Q., Shen, Y., Zhang, J. Q., A nonlinear correlation measure for multivariate data set. Physica D 200:287–295, 2005.
MathSciNet
MATH
Article
Google Scholar
Gray, R., Entropy and information theory. Springer: New York, 1990.
MATH
Google Scholar
Hagan, M. T., Demuth, H. B., Beale, M. H., Neural network design. PWS: Boston, 1996.
Google Scholar
Ali, A. N. (ed.), Advanced biosignal processing. 8, C, Springer: Berlin, 2009. doi:10.1007/978-3-540-89506-0.
Google Scholar
Aydın, S., Saraoǧlu, H. M., Kara, S., Singular spectrum analysis of insomnia. J. Med. Syst., 2009. doi:10.1007/s10916-009-9381-7.
Google Scholar
Richard, P. B., Fast training algorithms for multi layer neural nets. IEEE Trans Neural Netw. 2:346–354, 1991.
Article
Google Scholar
Gulbag, A., Temurtas, F., A study on quantitative classification of binary gas mixture using neural networks and adaptive neuro fuzzy inference systems. Sens. Actuators 115:252–262, 2006.
Article
Google Scholar
Temurtas, F., Tasaltın, C., Temurtas, H., et al., Fuzzy logic and neural network applications on the gas sensor data: Concentration estimation. Lect. Notes Comput. Sci., pp. 179–186, 2003.
Saraoǧlu, H. M., Edin, B., E-Nose system for anesthetic dose level detection using artificial neural network. J. Med. Syst. 6:475–482, 2007.
Article
Google Scholar