Automated Detection of Breast Cancer in Thermal Infrared Images, Based on Independent Component Analysis

Abstract

Breast cancer, among women, is the second-most common cancer and the leading cause of cancer death. It has become a major health issue in the world over the past decades and its incidence has increased in recent years mostly due to increased awareness of the importance of screening and population ageing. Early detection is crucial in the effective treatment of breast cancer. Current mammogram screening may turn up many tiny abnormalities that are either not cancerous or are slow-growing cancers that would never progress to the point of killing a woman and might never even become known to her. Ideally a better screening method should find a way of distinguishing the dangerous, aggressive tumors that need to be excised from the more languorous ones that do not. This paper therefore proposes a new method of thermographic image analysis for automated detection of high tumor risk areas, based on independent component analysis (ICA) and on post-processing of the images resulting from this algorithm. Tests carried out on a database enable tumor areas of 4 × 4 pixels on an original thermographic image to be detected. The proposed method has shown that the appearance of a heat anomaly indicating a potentially cancerous zone is reflected as an independent source by ICA analysis of the YCrCb components; the set of available images in our small series is giving us a sensitivity of 100% and a specificity of 94.7%.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Ferlay, J., Bray, F., Pisani, P., and Parkin, D. M., Globocan 2002: Cancer incidence, mortality and prevalence worldwide, IARC CancerBase no.5, ver. 2.0. Lyon: IARC, 2004.

  2. 2.

    Boyd, B. A., and Fine, R. E., Stereotactic breast biopsy: the nurse’s role. J. Radiol. Nurs. 26:4–10, 2007. doi:10.1016/j.jradnu.2006.11.001.

    Article  Google Scholar 

  3. 3.

    Gautherine, M., Thermopathology of breast cancer: measurement and analysis of in vivo temperature and blood flow. Ann. NY Acad. Sci. 1980:383–415, 1999.

  4. 4.

    Tan, T. Z., Quek, C., Ng, G. S., and Ng, E. Y. K., A novel cognitive interpretation of breast cancer thermography with complementary learning fuzzy neural memory structure. Expert. Systems Appl. 33:652–666, 2007.

    Article  Google Scholar 

  5. 5.

    Zou, Y., and Guo, Z., A review of electrical impedance techniques for breast cancer detection. Med. Eng. Phys. 25:79–90, 2003.

    Article  Google Scholar 

  6. 6.

    Mandelblatt, J. S., et al., Effects of mammography screening under different screening schedules: model estimates of potential benefits and harms. Ann. Intern. Med. 151:738–747, 2009.

    Google Scholar 

  7. 7.

    Ng, E. Y. K., A review of thermography as promising non-invasive detection modality for breast tumor. Int. J. Therm. Sci. 48:849–859, 2009. doi:10.1016/j.ijthermalsci.2008.06.015.

    Article  Google Scholar 

  8. 8.

    Zhixiong, G., and Kan-Wan, S., Simulated parametric studies in optical imaging of tumors through temporal log-slope difference mapping. Med. Eng. Phys. 29:1142–1148, 2007.

    Article  Google Scholar 

  9. 9.

    Tan, J. M. Y., Ng, E. Y. K., Acharya, R., Keith, L. G., and Holmes, J., Comparative study on the use of analytical software to identify the different stages of breast cancer using discrete temperature data. J. Med. Syst. 33:141–153, 2009. doi:10.1007/s10916-008-9174-4.

    Article  Google Scholar 

  10. 10.

    Orel, V. E., Romanov, A. V., Dzyatkovskaya, N. N., and Mel’nik, Y. I., The device and algorithm for estimation of the mechanoemisson chaos in blood of patients with gastric cancer. Med. Eng. Phys. 24:365–371, 2002.

    Article  Google Scholar 

  11. 11.

    Yahara, T., Koga, T., Yoshida, S., Nakagawa, S., Deguchi, H., and Shirouzu, K., Relationship between microvessel density and thermographic hot areas in breast cancer. Surg. Today. 33:243–248, 2003. doi:10.1007/s005950300055.

    Article  Google Scholar 

  12. 12.

    Carmeliet, P., and Jain, R. K., Angiogenesis in cancer and other diseases. Nature. 407:249–57, 2000.

    Article  Google Scholar 

  13. 13.

    Lloyd-Williams, K., and Handley, R. S., Infrared thermometry in the diagnosis of breast disease. Lancet. 2:1378–1381, 1961.

    Article  Google Scholar 

  14. 14.

    Parisky, Y. R., Sardi, A., Hamm, R., Hughes, K., Esserman, L., Rust, S., and Callahan, K., Efficacy of computerized infrared imaging analysis to evaluate mammographically suspicious lesions. AJR. 180:263–269, 2003.

    Google Scholar 

  15. 15.

    Arora, N., Martins, D., Ruggerio, D., Tousimis, E., Swistel, A. J., Osborne, M. P., and Simmons, R. M., Effectiveness of a noninvasive digital infrared thermal imaging system in the detection of breast cancer. Am. J. Surg. 196:523–526, 2008.

    Article  Google Scholar 

  16. 16.

    Kennedy, D. A., A comparative review of thermography as a breast cancer screening technique. Integr. Cancer Ther. 8:9–16, 2009. doi:10.1177/1534735408326171.

    Article  Google Scholar 

  17. 17.

    Qi, H., Kurungati, P. T., and Liu, Z., Early detection of breast cancer using thermal texture maps. Biomedical imaging 2002. Proceedings. 2002 IEEE International Symposium on. doi:10.1109/ISBI.2002.1029255.

  18. 18.

    Tang, X., and Ding H., Asymmetry analysis of breast thermograms with morphological image segmentation. Eng in Med and Bio Soc 2005, 27th Annual conference, IEEE-EMBS 2005, 10.1109/IEMBS.2005.1616766

  19. 19.

    Qi, H., and Head, J. F., Asymmetry analysis using automatic segmentation and classification for breast cancer detection in thermograms. 23rd IEEE International Conference on Eng in Med and Bio 2001.

  20. 20.

    Tang, X., Ding, H., Yuan, Y., and Wang, Q., Morphological measurement of localized temperature increase amplitudes in breast infrared thermograms and its clinical application. Biomed. Signal Process. Contr. 3:312–318, 2008.

    Article  Google Scholar 

  21. 21.

    Ng, E. Y. K., and Kee, E. C., Integrative computer-aided diagnostic with breast thermogram. J.F Mechanics in Medicine and Biology 7:1–10, 2007. doi:10.1142/so219519407002091.

    Google Scholar 

  22. 22.

    Koay, J., Herry, C., and Frize, M., Analysis of breast thermography with an artificial neural network. Proceedings of the 26th Annual International Conference of the IEEE EMBS, San Francisco, CA, USA September 2004;1–5.

  23. 23.

    EtehadTavakol, M., Sadri, S., and Ng, E. Y. K., Application of k- and fuzzy c-means for color segmentation of thermal infrared breast images. J. Med. Syst., 2008. doi:10.1007/s10916-008-9213-1.

    Google Scholar 

  24. 24.

    Schaefer, G., Nakashima, T., Zaivisek, M., Yokota, Y., Drastich, A., and Ishibuchi, H., Breast cancer classification using statistical features and fuzzy classification of thermograms. Fuzzy Systems Conference 2007, FUZZ-IEEE 2007, IEEE International, doi:10.1109/FUZZY.2007.4295520.

  25. 25.

    Schaefer, G., Závišek, M., and Nakashima, T., Thermography based breast cancer analysis using statistical features and fuzzy classification. Pattern Recogn. 42:1133–1137, 2009. doi:10.1016/j.patcog.2008.08.007.

    Article  Google Scholar 

  26. 26.

    Zhao, Q., Zhang, J., Wang, R., and Cong, W., Use of a thermocouple for malignant tumor detection. IEEE Eng. Med. Biol. Mag. 27:164–66, 2008.

    Article  Google Scholar 

  27. 27.

    Jakubowska, T., Wiecek, B., Wysocki, M., and Drews-Peszynski, C., Thermal signatures for breast cancer screening comparative study. In Proceedings of the 25th Annual International Conference of the IEEE EMBS Conference, Cancun. 2:1117–1120, 2003.

  28. 28.

    Ng, E. Y. K., and Fok, S. C., A framework for early discovery of breast tumor using thermography with artificial neural network. Breast J. 9:4341–343, 2003. doi:10.1046/j.1524-4741.2003.09425.x.

    Article  Google Scholar 

  29. 29.

    http://aathermography.com (last accessed Nov 2009).

  30. 30.

    Bronzino, J. D. (Ed.), Medical Devices and Systems (Biomedical Engineering Handbook), Ed. J. D. Bronzino, Publ. Taylor & Francis, pp. 25.1–25.20, 2006.

  31. 31.

    Abu-Amara, F., and Abdel-Qader, I., Detection of breast cancer using independent component analysis. Electro/Information Technology, 2007 IEEE International Conference on, pp. 428–431. doi:10.1109/EIT.2007.4374509.

  32. 32.

    Gallardo-Caballero, R., García-Orellana, C. J., Macías-Macías, M., González-Velasco, H. M., and López-Aligué, F. J., Independent component analysis applied to breast cancer detection on digitized mammograms. Int. Congr. Ser. 1281:1052–1057, 2005. doi:10.1016/j.ics.2005.03.072.

    Article  Google Scholar 

  33. 33.

    Amari, S., Chen, T., and Cichocki, A., Non-holonomic constraints in learning blind source separation. Kasabov, N. (Eds.), Progress in Connectionist-Based Information Systems, ICONIP-97, Vol. I. New Zealand: Springer, pp. 633–636, 1997.

  34. 34.

    Otsu, N., A threshold selection method from gray level histograms. IEEE Trans. Syst. Man Cybern. 9:62–66, 1979.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Luciano Boquete.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Boquete, L., Ortega, S., Miguel-Jiménez, J.M. et al. Automated Detection of Breast Cancer in Thermal Infrared Images, Based on Independent Component Analysis. J Med Syst 36, 103–111 (2012). https://doi.org/10.1007/s10916-010-9450-y

Download citation

Keywords

  • Breast cancer
  • Thermography
  • ICA
  • Image processing