Skip to main content

Advertisement

Log in

Predicting Arterial Blood Gas Values from Venous Samples in Patients with Acute Exacerbation Chronic Obstructive Pulmonary Disease Using Artificial Neural Network

  • Original Paper
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Arterial blood gas (ABG) has an important role in the clinical assessment of patients with acute exacerbations of chronic obstructive pulmonary disease (AECOPD). Because of ABG complications, an alternative method is beneficial. We have trained and tested five artificial neural networks (ANNs) with venous blood gas (VBG) values (pH, PCO2, HCO3, PO2, and O2 saturation) as inputs, to predict ABG values in patients with AECOPD. Venous and arterial blood samples were collected from 132 patients. Using the data of 106 patients, the ANNs were trained and validated by back-propagation algorithm. Subsequently, data from the remainder 26 patients was used for testing the networks. The ability of ANNs to predict ABG values and to detect significant hypercarbia was assessed and the results were compared with a linear regression model. Our results indicate that the ANNs provide an accurate method for predicting ABG values from VBG values and detecting hypercarbia in AECOPD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Barker, W. J., Arterial puncture and cannulation. In: Roberts, J. R., and Hedges, J. R. (Eds.), Clinical Procedures in Emergency Medicine, 3rd edition. Saunders, Philadelphia, pp. 308–322, 1998.

    Google Scholar 

  2. Mortenson, J. D., Clinical sequelae from arterial needle puncture, cannulation and incision. Circulation. 35:1118–1125, 1967.

    Google Scholar 

  3. McGillivray, D., Ducharme, F. M., Charron, Y., Mattimoe, C., and Treherne, S., Clinical decision making based on venous versus capillary blood gas values in the wellperfused child. Ann. Emerg. Med. 34:58–63, 1999.

    Article  Google Scholar 

  4. Kelly, A. M., Kyle, E., and McAlpine, R., Venous PCO2 and pH can be used to screen for significant hypercarbia in emergency patients with acute respiratory disease. J. Emerg. Med. 22:15–19, 2002.

    Article  Google Scholar 

  5. Kelly, A. M., Kerr, D., and Middleton, P., Validation of venous PCO2 to screen for arterial hypercarbia in patients with chronic obstructive airways disease. J. Emerg. Med. 28 (4)377–379, 2005.

    Article  Google Scholar 

  6. Murphy, R., Thethy, S., Raby, S., Beckley, J., Terrace, J., Fiddler, C., et al., Capillary blood gases in acute exacerbations of COPD. Respir. Med. 100 (4)682–686, 2006.

    Article  Google Scholar 

  7. Ibrahim, I., Ooi, S. B., Yiong Huak, C., Sethi, S., Point-of-care bedside gas analyzer: limited use of venous PCO2 in emergency patients. J Emerg Med. 2008 (in press).

  8. Ak, A., Ogun, C. O., Bayir, A., Kayis, S. A., and Koylu, R., Prediction of arterial blood gas values from venous blood gas values in patients with acute exacerbation of chronic obstructive pulmonary disease. Tohoku J Exp Med. 210 (4)285–290, 2006.

    Article  Google Scholar 

  9. Chu, Y. C., Chen, C. Z., Lee, C. H., Chen, C. W., Chang, H. Y., and Hsiue, T. R., Prediction of arterial blood gas values from venous blood gas values in patients with acute respiratory failure receiving mechanical ventilation. J. Formos. Med. Assoc. 102 (8)539–543, 2003.

    Google Scholar 

  10. Razi, E., and Moosavi, G. A., Comparison of arterial and venous blood gases analysis in patients with exacerbation of chronic obstructive pulmonary disease. Saudi Med. J. 28 (6)862–865, 2007.

    Google Scholar 

  11. Gambino, S. R., Comparisons of pH in human arterial, venous and capillary blood. Am. J. Clin. Pathol. 32:298–300, 1959.

    Google Scholar 

  12. Searcy, R. L., Gordon, G. F., and Simms, N. M., Choice of blood for acid-base studies (letter). Lancet. 41:12–32, 1963.

    Google Scholar 

  13. Long, A. P., Jr, Venous or arterial blood gas measurement (letter). JAMA. 217:1706, 1971.

    Article  Google Scholar 

  14. Forster, H. V., Dempsey, J. A., Thomson, J., Vidruk, E., and do Pico, G. A., Estimation of arterial PO2, PCO2, pH and lactate from arterialised venous blood. J. Appl. Physiol. 32:134–137, 1972.

    Google Scholar 

  15. Brooks, D., and Wynn, V., Use of venous blood for pH and carbon dioxide studies especially in respiratory failure and during anaesthesia. Lancet. 1:227–230, 1959.

    Article  Google Scholar 

  16. Paine, E. G., Boutwell, J. H., and Soloff, L. A., The reliability of arterialised venous blood for measuring arterial pH and PCO2. Am. J. Med. Sci. 242:431–434, 1961.

    Article  Google Scholar 

  17. Gambino, S. R., Normal values for adult human venous plasma pH and CO2 content. Am. J. Clin. Pathol. 32:294–297, 1959.

    Google Scholar 

  18. Kelly, A. M., McAlpine, R., and Kyle, E., Venous pH can safely replace arterial pH in the initial evaluation of patients in the emergency department. Emerg. Med. J. 18:340–342, 2001.

    Article  Google Scholar 

  19. Ma, O. J., Rush, M. D., Godfrey, M. M., et al., Arterial blood gas results rarely influence emergency physician management of patients with suspected diabetic ketoacidosis. Acad. Emerg. Med. 10:836–841, 2003.

    Article  Google Scholar 

  20. Gokel, Y., Paydas, S., Koseoglu, Z., et al., Comparison of blood gas and acid-base measurements in arterial and venous blood samples in patients with uraemic acidosis and diabetic ketoacidosis in the emergency room. Am. J. Nephrol. 20:319–323, 2000.

    Article  Google Scholar 

  21. Cross, S. S., Harrison, R. F., and Kennedy, R. L., Introduction to neural networks. Lancet. 5:1075–1079, 1995.

    Article  Google Scholar 

  22. Baxt, W. G., Application of artificial neural networks to clinical medicine. Lancet. 5:1135–1138, 1995.

    Article  Google Scholar 

  23. Bos, M., Bos, A., and van der Linden, W. E., Data processing by neural networks in quantitative chemical analysis. Analyst. 5:323–328, 1993.

    Article  Google Scholar 

  24. Ala-Korpela, M., Hiltunen, Y., and Bell, J. D., Quantification of biomedical NMR data using artificial neural network analysis: lipoprotein lipid profiles from 1H NMR data of human plasma. NMR Biomed. 5:235–244, 1995.

    Article  Google Scholar 

  25. Burge, S., and Wedzicha, J. A., COPD exacerbations: definitions and classifications. Eur. Respir. J. Suppl. 41:46s–53s, 2003.

    Article  Google Scholar 

  26. Dariani, S., Keshavarz, M., Parviz, M., Raoufy, M. R., and Gharibzadeh, S., Modeling force-velocity relation in skeletal muscle isotonic contraction using an artificial neural network. Biosystems. 90 (2)529–534, 2007.

    Article  Google Scholar 

  27. Tu, J. V., Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J. Clin. Epidemiol. 49:1225–1231, 1996.

    Article  Google Scholar 

  28. Lin, C. S., Li, Y. C., Mok, M. S., Wu, C. C., Chiu, H. W., and Lin, Y. H., Neural network modeling to predict the hypnotic effect of propofol bolus induction. Proc AMIA Symp. 2002:450–454, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parivash Eftekhari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raoufy, M.R., Eftekhari, P., Gharibzadeh, S. et al. Predicting Arterial Blood Gas Values from Venous Samples in Patients with Acute Exacerbation Chronic Obstructive Pulmonary Disease Using Artificial Neural Network. J Med Syst 35, 483–488 (2011). https://doi.org/10.1007/s10916-009-9384-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10916-009-9384-4

Keywords

Navigation