Journal of Medical Systems

, Volume 34, Issue 4, pp 755–765 | Cite as

Seizure Detection in Temporal Lobe Epileptic EEGs Using the Best Basis Wavelet Functions

  • Berdakh Abibullaev
  • Min Soo Kim
  • Hee Don Seo
Original Paper


In this paper, we propose a novel method using best basis wavelet functions and double thresholding that are well suited for detecting and localization of important epileptic events from noisy recorded seizure EEG signals. Our technique is based on dyadic wavelet decomposition and is mainly concerned detection of single epileptic transients within the observation sequence, such as ictal and interictal epochs of EEG. In our experiment we use temporal lobe epileptic data recorded during 84 h from four patients diagnosed with epilepsy. We have achieved promising results that demonstrate efficiency and simplicity that can be used in clinical studies as an automatic decision support tool. Thus reduce the physician’s workload and provide accurate diagnosis of epileptic seizures.


EEG Epileptic seizure detection Temporal lobe epilepsy Wavelet transforms Neural networks 



We would like to thank the Dr. Sang Do, Lee at the department of Neurology at the Dongsan Medical Center of Keimyung University, Daegu, South Korea, for collaboration and access hospital laboratories for patient’s epileptic data. This research was supported by the Yeungnam University research grants.


  1. 1.
    Smith, S. J. M., EEG in diagnosis, classification, and management of patients with epilepsy. J. Neurol. Neurosurg. Psychiatry. 76:2–7, 2005.Google Scholar
  2. 2.
    Liu, S., Zhang, T., and Yang, S., A multistage, multimethod approach for automatic detection and classification of epileptiform EEG. IEEE Trans. Biomed. Eng. 49 (2)1557–1566, 2002. doi: 10.1109/TBME.2002.805477.CrossRefGoogle Scholar
  3. 3.
    Durka, P. J., From wavelets to adaptive approximations: Time–frequency parameterization of EEG. Biomed. Eng. Online. 2:1–30, 2003. doi: 10.1186/1475-925X-2-1.CrossRefGoogle Scholar
  4. 4.
    Gotman, J., Automatic recognition of epileptic seizure in the EEG. Electroencephalogr. Clin. Neurophysiol. 54:530–540, 1982. doi: 10.1016/0013-4694(82)90038-4.CrossRefGoogle Scholar
  5. 5.
    Adeli, H., Zhou, Z., and Dadmehr, N., Analysis of EEG records in an epileptic patient using wavelet transform. J. Neurosci. Methods. 123 (1)69–87, 2003. doi: 10.1016/S0165-0270(02)00340-0.CrossRefGoogle Scholar
  6. 6.
    Subasi, A., EEG signal classification using wavelet feature extraction and a mixture of expert models. Expert Syst. Appl. 32 (4)1084–1093, 2007. doi: 10.1016/j.eswa.2006.02.005.CrossRefGoogle Scholar
  7. 7.
    McGrogan, N., Neural network detection of epileptic seizures in the electroencephalogram, PhD thesis, Oxford University, Oxford, UK, February 1999.Google Scholar
  8. 8.
    Samanwoy, G. D., Adeli, H., and Dadmehr, N., Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection. IEEE Trans. Biomed. Eng. 54 (9)1545–1551, 2007. doi: 10.1109/TBME.2007.891945.CrossRefGoogle Scholar
  9. 9.
    Kalayci, T., and Ozdamar, O., Wavelet processing for automated neural network detection of EEG spikes. IEEE Eng. Med. Biol. Mag. 2:160–166, 1995. doi: 10.1109/51.376754.CrossRefGoogle Scholar
  10. 10.
    Srinivasa, V., Eswaran, C., and Sriraam, N., Approximate entropy-based epileptic EEG detection using artificial neural networks. IEEE Trans. Inf. Technol. Biomed. 11 (3)288–295, 2007.CrossRefGoogle Scholar
  11. 11.
    Kezban, A., Hacer, B., et al., A radial basis function neural network model for classification of epilepsy using EEG signals. J. Med. Syst. 32 (5)403–408, 2008. doi: 10.1007/s10916-008-9145-9.CrossRefGoogle Scholar
  12. 12.
    Mormann, F., Andrzejak, R. G., Elger, C. E., and Lehnertz, K., Seizure prediction: The long and winding road. Brain—J. Neurol. 130:314–333, 2007.Google Scholar
  13. 13.
    American, E. E. G., Society. Guidelines for standard electrode position nomenclature. J. Clin. Neurophysiol. 8:200–207, 1991.CrossRefGoogle Scholar
  14. 14.
    Wavelet, A., Tour of signal processing. Academic: San Diego, CA, 1999.Google Scholar
  15. 15.
    Humphrey, D. R., Electrophysiological techniques. Society. Neuroscience: Atlanta, GA, 1979.Google Scholar
  16. 16.
    Donoho, D. L., De-noising by soft thresholding. IEEE Trans. Inf. Theory. 41 (3)613–627, 1995. doi: 10.1109/18.382009.zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Donoho, D. L., and Johnstone, I. M., Ideal spatial adaptation by wavelet shrinkage. Biometrika. 81 (3)425–455, 1994. doi: 10.1093/biomet/81.3.425.zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Iasemidis, L. D., Epileptic seizure prediction and control. IEEE Trans. Biomed. Eng. 50 (5)549–556, 2003. doi: 10.1109/TBME.2003.810705.CrossRefGoogle Scholar
  19. 19.
    Niedermeyer, E., and Lopes da Silva, F., Electroencephalography: Basic principles, clinical applications, and related fields, 5th ed. Lippincott Williams & Wilkins: Baltimore, pp. 562–624, 2004.Google Scholar
  20. 20.
    Kim, M. S., Cho, Y. C., Abibullaev, B., and Seo, H. D., Analysis of brain function and classification of sleep stage EEG using Daubechies wavelet. Sens. Mater. 20 (1)1–15, 2008.Google Scholar
  21. 21.
    Abibullaev, B., and Don, S. H., Characteristic wave detections in ECG using complex-valued continuous wavelet transforms. J. Biomed. Eng. Res. 29 (4)278–285, 2008.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Berdakh Abibullaev
    • 1
  • Min Soo Kim
    • 2
  • Hee Don Seo
    • 1
  1. 1.Department of Electronic EngineeringYeungnam UniversityGyeongsanSouth Korea
  2. 2.Integrated Circuit Group, Toyohashi University of TechnologyToyohashiJapan

Personalised recommendations